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ABSTRACT
Alternative measures to deal with supply disruptions exist. We consider a make-to-order (MTO) sup-
ply chain with one manufacturer who sources from a single supplier. When a supply disruption
occurs, the manufacturer can choose to satisfy some demand by either maintaining production
through safety stocks or through a secondary contingent source, and turn some unmet demand
into backorders on the basis of compensation. An optimal control model under consideration of
the customers’ dynamic reactions to the joint implementation of these strategies is formulated with
the objective of minimising the cost of disruption. Through the application of Pontryagin’s Maxi-
mum Principle, optimal mitigation strategies are established in closed form. They provide analytical
guidance on how to dynamically and jointly adapt the quantity of contingent sourcing, the price
of compensation, and the speed of safety inventory consumption. The results indicate how cost
and time-related factors impact these strategies. We also demonstrate that pure strategies are only
effective in tackling short supply shortages. For long disruptions, it is superior to adopt combined
strategies that simultaneously incorporate two countermeasures in certain periods.
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1. Introduction

In recent years, with trends like global purchases and
lean production, the risk of supply chain disruption has
increased and the impact of disruptions can be substan-
tial. An empirical investigation that polled 151 supply
chain managers found that 73% of the companies expe-
rienced costly disruptions in the last five years (Schmitt
et al. 2017). In 2020, due to the epidemic Covid-19, 94%
of the Fortune 1000 companies suffer from disruption to
their supply chains (Fortune 2020). Academics and prac-
titioners have paid considerable attention to the manage-
ment of supply disruptions. A large number of strate-
gies that aim at alleviating the negative impact caused
by failures in the supply process have been proposed,
for instance, demand switching (Tomlin 2009), inventory
policies (Qi 2013), compensation to customers (Chen
et al. 2015), contingent sourcing (He et al. 2020), sup-
plier diversification (Silbermayr and Minner 2014; 2016;
Golmohammadi and Hassini 2020), dynamic schedul-
ing (Ivanov, Dolgui, and Sokolov 2018), recovery (Ivanov
et al. 2017), and others.

In practice, safety inventory hedging is one of the
most applied proactive strategies for handling supply
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disruptions (Gao 2015). Nonetheless, the hedging of
supply shocks by means of pure safety stock normally
requires a large amount of stock for a long time. Con-
sequently, it generates high inventory costs, and can
jeopardise a firm’s long-term profitability and viabil-
ity under some situations, especially when disruptions
are rare events. To avoid these costs, many firms are
strongly tempted towards cutting back the scale of needed
stock.

Particularly in a make to order (MTO) supply chain,
companies tend to keep minimum inventories (of mate-
rials, components and parts in buffer, but not of a finished
product) and adopt just-in-time (lean) practices ranging
from procurement to the delivery of final products (Xu
2020). For example, Dell Computers, which uses MTO
production, only carries a maximum of 72 h inventory
across its entire operation (Breen 2011). As a result, a
minor unpredictable supply shortagemight lead to a pro-
duction halt and devastating losses. For anMTO produc-
tion system that carries insufficient preventive inventory,
it is essential to properly incorporate other proactive or
reactive policies as a supplement to effectively manage
supply.
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The importance of developing mixed strategies by
combining diversified proactive policies or incorporat-
ing both proactive and reactive countermeasures attracts
increasing attention in recent studies (Ivanov et al. 2016;
Topan and van der Heijden 2020). In reality, many
companies also tend to adopt mixed strategies. For
instance, to avoid devastating disruptions, Huawei (a
leading global provider of information and communica-
tions technology (ICT) infrastructure and smart devices
in China) incorporates supplier selection and safety
inventory from the proactive aspect (UKEssays 2018).
Nonetheless, the research is still in its infancy incorpo-
rating proactive and reactive countermeasures, especially
taking into consideration the implementation of both
supply-side and demand-side tools in the progress of
realising reactive policies, where the customers’ post-
disruption reaction is sensitive to both price and time.
Thus, to fill this gap, we consider an MTO production
system with one manufacturer who sources from a single
supplier where the supplier has already faced a disrup-
tion. The manufacturer carries a certain amount of raw
materials as a precaution. After the occurrence of a dis-
ruption, the existing safety stock of raw materials can be
gradually consumed to continue production. The mar-
ket demand is deterministic but sensitive to the waiting
time for delivery. In terms of reactive policies, we con-
sider both demand-side compensation and supply-side
sourcing.

Contingent sourcing is a widely utilised emergency
countermeasure where an enterprise turns to a backup
supplier (or to the spot market) in the event of a fail-
ure at its main supplier (Saghafian and Van Oyen 2016).
As pointed out by Rigby and Bilodeau (2009), 63%
of their surveyed companies employed this strategy in
2008. However, the contingent source normally comes
with a high price and a lead time. For example, due to
the supply disruption caused by Covid-19, the Indian
automobile manufacturers now adopt an emergency
procurement of components from China and South
Korea, paying a high price on chartered flights (Yadav
2020).

Compensation is another common reactive mecha-
nism used for tackling the customers’ dissatisfaction dur-
ing an empty-stock period. In 2011, when HP and its
partners failed to fulfil the orders of TouchPad in time,
its retailers employed multiple forms of compensation
to reduce the damage of the stock-out, including apolo-
gies, a free service for future deliveries, future discounts,
etc. (Dong et al. 2015). The provided compensation level
(discount price) is commonly related to the length of
the customers’ waiting time. Inspired by the long disrup-
tion caused by Covid-19, both researchers and managers
in industries emphasise the importance of establishing

strategies to reduce the damage from the demand-side
(Accenture 2020).

Motivated by the above examples, we consider a
lead time for contingent sourcing. The compensation is
designed by the manufacturer as a dynamic discount
based on the customers’ waiting time, which is deter-
mined by the customers’ arrival time and the time when
the purchase is fulfilled. In view of constrained pro-
duction capacity, customers who choose to wait will
receive products at a later point in time after the sup-
ply disruption ends, following a ‘First come first served’
principle.

We examine the joint dynamic decision of com-
pensation pricing, contingent sourcing, and inventory
consumption for a manufacturer who wishes to opti-
mally mitigate supply disruption at any point in time
during a supply shortage. By presenting the results in
closed form, our paper provides two main contribu-
tions to the literature on supply disruption manage-
ment. First, based on the control theory, we develop
a new approach for jointly designing optimal supply
disruption-management strategies, capturing the cus-
tomers’ state-dependent behaviour. The state dynamics
of backlogged demand and inventory under the joint
countermeasures performed by manufacturers are cap-
tured in the disruption duration and recovery periods.
Second, we propose optimal time-dependent mitigation
strategies that jointly incorporate proactive and reac-
tive supply- and demand-side aspects. The established
strategies provide analytical guidance for manufactur-
ers on how to optimally adjust the joint time-dependent
decision by contingent sourcing, the compensation level,
and inventory consumption. The results also indicate
the sequence of announcing countermeasures to cus-
tomers in the process of realising combined strategies.
We identify how cost factors and time-related factors
(customer sensitivity to time, disruption duration, and
lead time of sourcing) play different roles during the
design of mitigation strategies. Our results provide both
analytical and numerical evidence that it is essential to
develop dynamic combined strategies for hedging against
disruptions.

The remainder of this paper is organised as follows. In
Section 2, a literature review is presented. The problem
description and model formulation are given in Section
3. Section 4 proposes the optimal dynamic strategies for
mitigating a supply shortage. Managerial insights and
conclusions are presented in Sections 5–6.

2. Literature review

A growing body of literature studies the management of
risks in supply chains. Snyder et al. (2016) and Baryannis
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et al. (2019) provide detailed discussions in this field. Our
work is mainly related to two streams: pure strategies (i.e.
contingent sourcing, customer compensation, and safety
inventory) and combination strategies.

2.1. Pure strategies

A buyer can utilise many procurement strategies to
proactively or reactively manage supply disruptions, for
instance, backup sourcing (with pre-disruption con-
tracts), contingent sourcing, and supplier diversifica-
tion/selection with the splitting of orders among mul-
tiple/dual suppliers to proactively reduce the disrup-
tion risk or to reactively replenish inventory (Namdar
et al. 2018; He et al. 2019; Gupta and Ivanov 2020). We
consider the contingent (backup/dual) sourcing strategy
with no underlying contracts: The manufacturer/retailer
orders from a single primary supplier, and will place an
emergency order with a secondary supplier (spot mar-
ket or backup) when the primary supplier fails to deliver.
This strategy is studied by Tomlin (2006) and other sub-
sequent papers.

Extensive work investigates the optimal time and
quantity of using the second source. Considering a sup-
ply chain with two competing manufacturers, Gupta,
He, and Sethi (2015) study several firms’ buying deci-
sions and reveal that supply disruption and procure-
ment times jointly impact the optimal order quantities.
Recent research on contingent sourcing strategies con-
cerns dynamic aspects. Kouvelis and Li (2012) inves-
tigate the ex-post dynamic emergency response that
identifies the timing and size of an emergency order
that needs to be placed, and find that the response
is cost-effective when the coefficient of variation of
the uncertain lead-time is high. Saghafian and Van
Oyen (2016) investigate the optimal design of flexibil-
ity in a backup system under dynamic disruption risks.
Based on a post-disruption customer behaviour fore-
cast, He et al. (2020) propose dynamic contingent sourc-
ing strategies. The existing literature further investigates
the benefits of contingent sourcing through comparison.
By developing coordination models under both uncer-
tain supply production and uncertain demand, Chen
and Yang (2014) compare emergency backup sourcing
decisions under various scenarios of relative channel
power and reveal that the decentralised operation is
rather dependent on backup sourcing products. Look-
ing at two competing buyers who use either emergency
sourcing or an optimal allocation procurement strat-
egy, He, Huang, and Yuan (2016) compare these two
strategies and point out that the procurement deci-
sion is critically determined by supplier reliability and
sales price.

The relevant literature regarding safety inventory
strategies mostly focuses on examining the optimal stock
level under different kinds of supply uncertainty, or
on the order placement under consideration of safety
stock. Using an EOQ model that considers random dis-
ruptions at both the supplier and the retailer end, Qi,
Shen, and Snyder (2009) explore the optimal order size
for the retailer and examine the safety stock level the
retailer needs in order to protect against supplier disrup-
tions. Some research extends to other forms of uncer-
tainty or limitation when analysing an inventory holding
strategy. For example, taking time-dependent costs for
both inventory holding and shortages into consideration,
Taleizadeh (2017) develops a lot-sizing inventory model
that hedges against supply disruptions. Later, based on
the same assumption about cost, Saithong and Luong
(2019) propose a periodic-review base-stock inventory
policy in a two-stage supply chain. Svoboda, Minner,
and Yao (2020) provide a comprehensive overview of the
existing multi-supplier inventory models.

In the context of safety inventory, the works most rele-
vant to our paper are the ones by Paul andRahman (2018)
and Topan and van der Heijden (2020). Instead of opti-
mising the pre-disruption inventory or post-disruption
replenishment, they focus on how to reactively consume
reserved stock. Using a simulation model, Paul and Rah-
man (2018) generate a recovery plan based on safety stock
to overcome sudden supply delays. In a multi-item two-
echelon spare parts supply network, Topan and van der
Heijden (2020) investigate operational safety inventory
interventions from both proactive (to reduce stock-out
risks) and reactive aspects (to fulfil a demand that is
not satisfied), including lateral transshipments between
local warehouses, emergency shipments from a central
warehouse, and passively waiting.

About the pure compensation strategy, Bhargava, Sun,
and Xu (2006) state that stock-out compensation is
broadly implemented in traditional and online retailing.
Most of the existingwork defines compensation as a price
reduction for customers who must wait and will be sat-
isfied later. Chen et al. (2015) propose another compen-
sation mechanism for backorders, namely a priority auc-
tionwith an admission price. Under the auction compen-
sation, priority is allocated according to the customers’
bid prices. Recently, a few related studies extend a gen-
eral pricing problem in response to supply uncertainties
(Gupta, Ivanov, and Choi 2020).

2.2. Combination strategies

In the second stream, a few types of combination strate-
gies are proposed via comparison. Based on a single-
product setting where one supplier is unreliable and
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Table 1. The comparison of existing literature.

Papers SI CS P Approch Recovery Time-dependent Joint Decision Specification

Gupta, He, and Sethi (2015)
√

GT
Kouvelis and Li (2012)

√ √
QM

√
Lead time

Saghafian and Van Oyen (2016)
√ √

DP
√ √

He et al. (2020)
√ √

QM
√ √

Chen and Yang (2014)
√ √

GT coordination
He, Huang, and Yuan (2016)

√ √
GT

Qi, Shen, and Snyder (2009)
√

GT
Taleizadeh (2017)

√
QM

√
Saithong and Luong (2019)

√
QM

√
Paul and Rahman (2018)

√
QM

√
Topan and van der Heijden (2020)

√
MIP

√ √
lateral transshipments/
emergency shipments

Bhargava, Sun, and Xu (2006)
√ √

GT
√

Chen et al. (2015)
√ √

GT
√

First-come-first served
Tomlin (2006)

√ √
GT

Su and Zhang (2009)
√ √

GT
Li, He, and Chen (2017)

√ √
QM

√
Lead time

Shao (2018)
√

GT
√ √

redundant capacity sharing
Kumar, Basu, and Avittathur (2018)

√ √
GT

√
Wang and Yu (2020)

√ √
GT

√
Gupta, Ivanov, and Choi (2020)

√
GT

Azad and Hassini (2019)
√ √

MIP
√ √ √

outsourcing
Our paper

√ √ √
CT

√ √ √
First-come-first served &Lead
time

GT: Game theory; QM: Quantitative model; DP: Dynamic programming mixed-integer; MIP: mixed-integer programming; CT: Control theory. SI: Safety Inventory;
CS: Contingent Sourcing; P: Pricing or Compensation.

another is reliable but more expensive, Tomlin (2006)
proposes amixed strategy that incorporates partial sourc-
ing and inventory. Referring to ex-post compensation as
an availability guarantee, Su and Zhang (2009) compare it
with an ex-ante strategy that deals with stock-outs: com-
mitment guarantee (commits to a particular quantity)
combined with commitment and availability guarantees
first-best outcomes for the seller. By comparing emer-
gency backup sourcing, production recovery, and passive
acceptance, Li, He, and Chen (2017) propose two types
of combination strategies, respectively for prevention and
non-prevention systems.

Shao (2018) provides a framework for investigating
joint optimisation based on two policies that mitigate
production disruptions: compensation and redundant
capacity sharing. Based on a duopoly setting, Kumar,
Basu, and Avittathur (2018) explore how a retailer can
jointly use pricing decisions and contingent sourcing
to cope with the supply disruption risk when there is
another competing retailer with a more reliable sup-
ply. The emergency sourcing quantity and sales price
are simultaneously examined. Similar to this work, con-
sidering a committed and a responsive pricing strat-
egy under which the retailer adjusts the sales price
before and after the supply state is realised, Wang and
Yu (2020) investigate whether a supply-side contin-
gent sourcing strategy should be jointly adopted with
a demand-side pricing strategy to mitigate supply dis-
ruption. Considering dynamic pricing as a recovery
lever to manage demand during supply disruptions, and

under the assumption that demand can be satisfied via
a partially disrupted production facility or outsourc-
ing, Azad and Hassini (2019) develop a portfolio of
recovery strategies by a programming model and a Ben-
ders decomposition algorithm. The strategies incorpo-
rate pricing, transportation rerouting, and outsourcing.
Two uncertain recovery parameters are considered via
a scenario approach: the number of disrupted capac-
ities in the facilities and the length of the recovery
period.

Based on the above analysis, our paper differs from
the existing literature in four dimensions (shown in
Table 1). First, in the context of reactive supply dis-
ruption mitigation, several recent papers initially realise
the importance of incorporating demand-side strate-
gies along with supply-side sourcing strategies, where
the time-independent (static) pricing is considered as
an endogenous demand-adjusting tool. Taking the cus-
tomers’ finite tolerance to wait time into account, we
consider that demand is both price-sensitive and time-
sensitive. A dynamic pricing (compensation) decision is
incorporated. Second, unlike most of the literature that
only focuses on the disruption duration period, we con-
sider the post-disruption recovery period as well when
evaluating disruption loss. The recovery period is char-
acterised based on two aspects: the production capacity
and the backlogged demand that has accumulated during
disruption and will be satisfied after the end of the dis-
ruption under a ‘first-come-first-served’ principle. Third,
in addition to a high price, the lead time of contingent
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sourcing is also considered. Together with the customers’
finite tolerance to waiting time, we capture the possibil-
ity that a contingent source with a long lead time might
be incapable of satisfying demand. Fourth, different from
most work that applies control theory responding to
uncertain disturbances in a system (Ivanov and Dolgui
2019), we focus on specific strategies in closed form. By
incorporating proactive inventory consumption, reactive
supply-side sourcing, and demand-side compensation,
the combination strategy is optimised with the addition
of a dynamic joint decision.

3. Problem description andmodel formulation

A firm produces and sells a single product to customers,
and sources from a regular supplier who is unreliable and
has infinite capacity. There is an emergency supplier who
is reliable, expensive, capacity constrained, and a lead
time t0. The normal demand rate of finished products is
deterministic and, without loss of generality, normalised
to ‘1’. The firm practices make-to-order manufacturing
with a production capacity PC > 1, which implies that
no inventory of finished products is kept on hand. Before
the appearance of a supply disruption, the production is
realised at the demand rate ‘1’. In view of the unreliabil-
ity of the regular supplier, the manufacturer proactively
carries I0 units of safety stock in raw materials to sup-
port the option of responding to shortages caused by
supply disruptions. We assume that a supply disruption
occurs at time ‘0’ and has a deterministic duration of T
periods.

Production stops immediately if no countermeasures
are adopted, and thus a stock-out occurs for customers
who arrive at any time t. Customers behave in two
ways: they either leave (lost sales) or stay (backo-
rders). To avoid lost sales and thus to effectively miti-
gate supply disruption, the manufacturer simultaneously
makes two decisions: control r2(t) as backorders through
compensation, and satisfy d(t) by resuming produc-
tion through the contingent source and safety inven-
tory. As a result, 1 − r2(t) − d(t) demand is lost at time
t, and backlogged demand b(t) is accumulated at the
rate ḃ(t) = r2(t).

Therefore, two questions are crucial for the manu-
facturer at time t: (1) How much demand should be
kept as backorders (to be satisfied after the end of the
supply disruption)? How much demand should be met
during the supply shortage? That is, determining the
optimal dynamic joint decision {d(t), r2(t)} to minimise
disruption losses. (2) howmuch compensation should be
provided? how many units should be procured using a
contingent source and how much safety stock should be
consumed simultaneously?

Table 2. Notation.

Notations Description

Decisions s(t) number of customers who are provided
contingent sourcing

p(tfulfilled , t) compensation provided to customers
r2(t) rate of backorder demand
d(t) quantity of satisfied demand during disruption

Parameters T length of disruption duration
t0 lead time of the second source

tfulfilled time when backlogged demand is fulfilled.
twait waiting time before backlogged demand is

fulfilled.
ti0 time when inventory reaches zero
θ customer sensitivity to waiting time

r0(t) customers’ willingness to place backorder
without compensation

r1 rate of customers who accept contingent
sourcing, r1 = 1 − θ t0

PC production capacity of the manufacturer,
PC > 1

b(t) quantity of the backlogged demand
ḃ(t) marginal increase of backlogged demand.
I0 initial amount of safety rawmaterials, I0 < T .
I(t) inventory level
İ(t) marginal increase of inventory.
c0 unit sourcing cost from the regular supplier
cs unit contingent sourcing cost from the

emergency supplier
c1 unit production cost
ch unit inventory holding cost per unit of time
cp unit cost for each level of compensation

(normalised discount)
cl unit cost for a lost sale

For convenience, we introduce the following auxiliary
variables

(i) f1 = b∗(τ1), f2 = PC−1
θ

(2 − PC − θT + θ t) + C1

e−
θ t

PC−1 , f3 = b∗(τ3)+ t − τ3, f4 = b∗(τ4) + (1 − r1)
(t − τ4).

(ii) F1 = CF1e
− θ t

PC−1 + c0 − λ2(0) + ch
(
PC−1

θ
− t

)
,

F2 = CF2e
− θ t

PC−1 + c0 + c1 − cl, F3 =CF3e
− θ t

PC−1 +
c0 − λ2(0)(1− r1)− csr1 + ch(1 − r1)

(
PC−1

θ
− t

)
,

F4 = λ1(τF4) − θ(t−τF4)
PC−1 cp.

(iii) M1 = c0 + c1 − cl,M2 = c0 − cs.

The τk and τF4 respectively present the entry points of the
time intervals with b∗(t) = fk and λ1 = F4. Where, k =
1, 2, 3, 4. The constants C1, CF1,CF2 and CF3 are to be
determined by the continuity of the backlogged demand
and the corresponding co-state variable λ1.

We assume c1 + cs < cl, which means that it is prefer-
able to procure contingent sources to resume production
to doing nothing and suffering lost sales Table 2.

Next, we start by exploring the dynamics of inven-
tory and demand under the combined countermeasure
incorporating compensation, sourcing, and inventory
consumption.
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3.1. Dynamics of inventory and demand during and
after disruption

3.1.1. The dynamics of the compensation policy
To quantify howmany of a group of customers are willing
to place a backorder, the backorder rate is well-utilised in
quite a few publications on stock-out management.

Under compensation, customers who backorder will
receive the product with a delay andwith a compensation
p(tfulfilled, t) at time tfulfilled after the end of the disrup-
tion. When offered such compensation in times of stock-
out, some customers are willing to accept and postpone
their order. We assume that the customers’ willingness
to back-order is proportional to the level of the pro-
vided incentive, for instance, the size of a price discount
(Drake and Pentico 2011). On the other hand, some cus-
tomers are willing to wait for later fulfilment without
incentives because of a good reputation of the supplier or
due to brand loyalty (Sarkar, Mandal, and Sarkar 2015).
Thus, in alignment with the common assumption (Ding,
Kouvelis, andMilner 2006), we allow a nonnegative back-
ordering willingness r0(t) if no compensation is offered,
andmodel the customers’ back-ordering willingness u(t)
under compensation as

u(t) = r0(t) + p(tfulfilled, t). (1)

The compensation level p(tfulfilled, t) is a normalised
price discount. u(t) = 1 when p(tfulfilled, t) = 1 − r0(t).
In other words, all customers are willing to backorder if
the compensation level reaches 1 − r0(t). From the per-
spective of the manufacturer, there is no need to provide
compensation that exceeds this level.Hence, the compen-
sation level is limited by 0 ≤ p(tfulfilled, t) ≤ 1 − r0(t).

Most existing studies assume that the backorder rate
without incentives decreases over the lead time of deliv-
ery in the form of an exponential, polynomial, or lin-
ear function (Shao and Dong 2012; Pentico, Toews, and
Drake 2015). We consider a linear form of r0(t) in this
study. Therefore, by limiting 0 ≤ r0(t) ≤ 1,

r0(t) = [1 − θ(tfulfilled − t)]+. (2)

The length of the waiting time is given as twait =
tfulfilled − t. All customers are willing to backorder with-
out compensation if the sensitivity is zero. Such a case
rarely occurs in reality, thus we focus on 0 ≤ r0(t) < 1.
That is, the partial back-ordering behaviour introduced
in (2) will happen in one of the following two states.

(i) Demand State 1 where r0(t) = 0: twait ≥ 1/θ . If the
waiting time exceeds a critical length or customers
are significantly sensitive, no customer is willing to
delay the purchase without compensation.

(ii) Demand State 2 where 0 < r0(t) < 1: twait < 1/θ .
Due to the customers’ patience or the short waiting
time, a positive fraction of customers might choose
to backorder without compensation.

Based on the customers’ back-ordering willingness
u(t), the manufacturer decides upon the backorder rate
r2(t) and the compensation level p(tfulfilled, t). Note that
the number of customers that actually backorder is lim-
ited by the number of customers who are willing to
backorder, that is, r2(t) ≤ u(t).

3.1.2. The dynamics of demand and inventory to
contingent sourcing
To satisfy d(t) during disruption, the manufacturer
can choose between two options to resume produc-
tion: inventory and contingent sourcing. The difference
between these twopolicies is that customers receive prod-
ucts immediately if safety inventory is used, whereas they
can only be satisfied after a lead time if contingent sourc-
ing is adopted. As a result, if the lead time t0 of contin-
gent sourcing exceeds a tolerable length of time, some
customers might reject the contingent sourcing policy
offered by the manufacturer, which results in lost sales.

Suppose that the contingent sourcing policy is offered
to s(t) customers, 0 ≤ s(t) ≤ 1. Due to the lead time,
r1 = 1 − θ t0 of themaccept it andwill be satisfied at time
t0 + t. To fulfil this portion of the demand, the manu-
facturer thus procures r1s(t) raw materials at a price of
cs. In the meantime, inventory is consumed at the rate
of − İ(t), where İ(t) ≤ 0. Therefore, by using these two
channels of materials, production is realised at the rate of
r1s(t) − İ(t) to satisfy d(t), i.e. d(t) = r1s(t) − İ(t).

3.1.3. The dynamics of demand and inventory after
disruption
Due to the joint adoption of the above policies, a certain
amount of backlogged demand has accumulated at the
end of the supply disruption, and the safety stock is com-
pletely consumed. Therefore, we take into account a time
interval (T,Tmax), namely the recovery period. During
recovery, the regular supplier restores, hence rawmateri-
als are procured at a cheap price and production can be
resumed and safety stock can be refilled. The safety stock
of raw materials is refilled after the backlogged demand
is completely met at the time Tmax. Furthermore, in view
of the infinite capacity of the regular supplier, we assume
that the inventory instantly reverts to I0 at Tmax.

To satisfy both the backlogged demand and the real-
time demand, production is realised at the maximum
rate. The backlogged demand decreases at the rate of
PC − 1 during the recovery period. On the other hand, in
a real market scenario, backlogged demand is commonly
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Figure 1. Inventory and backlogged demand in the MTO system.

served in the order of arrival. That is, for the customer
who backorders at time t, the time when she/he is cho-
sen based on a ‘First come first served’ principle (Chen
et al. 2015), can be derived as

tfulfilled = T + b(t)
PC − 1

. (3)

Given (3), the length of the customers’ waiting time
is specified, and the customers’ partial backordering
behaviour r0(t) (see (2)) can be further determined in
Lemma 1.

Lemma 1: Under the ‘First come first served’ principle,
the customers’ partial backordering willingness without
compensation is derived as r0(t) = (1 − θ twait)+. Where,

twait = T + b(t)
PC − 1

− t, (4)

and twait increases over time if r2(t) < PC − 1 and
decreases otherwise.

Proof: According to (3), twait = tfulfilled − t = T +
b(t)
PC−1 − t. The derivative of twait with respect to the time
variable t is derived as dtwait

dt = db(t)/dt
PC−1 − 1 = r2(t)

PC−1 − 1.
The Lemma 1 is achieved. �

Lemma 1 illustrates the dynamics of the customers’
state-dependent behaviour. If b(t) ≥ ( 1

θ
+ t − T

)
(PC −

1), toomuch backlogged demand has accumulated in the
system, thus no customer is willing to wait in line without

any incentives, i.e. r0(t) = 0. Otherwise, the customers’
behaviour falls intoDemand State 2where r0(t) > 0. Fur-
thermore, the results show an important property of the
customers’ dynamic behaviour. At time t, if the manu-
facturer decides to accept a backorder rate that exceeds
his/her recovery capability during the recovery period,
it will reduce the willingness of subsequent customers to
wait without compensation.

The dynamics of safety inventory and backlogged
demand during (0,Tmax) in thisMTOproduction system
are depicted in Figure 1.

Due to lead time t0, raw materials obtained through
contingent sourcing in the time interval (T − t0,T) can
only be utilised for production after the supplier is
restored at time T (see Figure 1). Thus, there is no
need to implement contingent sourcing during this short
phase. In other words, the only available countermeasure
in (T − t0,T) is customer compensation. Considering
that fruitful research has been done on pure pricing or
compensation, we focus on the joint implementation of
inventory consumption, contingent sourcing, and cus-
tomer compensation to cope with the disruption during
the time interval (0,T − t0).

As afore analysed, the backlogged demand accu-
mulated in (0,T − t0) will be met during (T,Tmax1).
That is, both the disruption duration (0,T − t0) and
the disruption recovery period (T,Tmax1) are impacted,
where Tmax1 = T + b(T − t0)/(PC − 1) (see (3)). Next,
to identify the optimal decision formitigating disruption,
we evaluate the disruption impact incurred during these
two periods.
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Table 3. Strategies overview.

Decisions

s∗ r2∗ p∗ d∗ −İ∗ b∗ Strategies

0 0 0 1 1 f1 IH
0 r0∗ 0 1 − r0∗ 1 − r0∗ f2 IL
1 0 0 1 1 − r1 f1 SIH
1 r0∗ 0 1 − r0∗ 1 − r0∗ − r1 f2 SIL
1 0 0 r1 0 f1 S0H
1 r0∗ 0 r1 0 f2 SrH
(1 − r0∗)/r1 r0∗ 0 1 − r0∗ 0 f2 SL
0 1 1 0 0 f3 PH
0 1 1 − r0∗ 0 0 f3 PL
1 1 − r1 1 − r1 r1 0 f4 SPH
1 1 − r1 1 − r1 − r0∗ r1 0 f4 SPL

3.2. Disruption impact

Based on the demand and inventory dynamics during
the impacted periods (0,T − t0) ∪ (T,Tmax1), the dis-
ruption impact represented by the difference between the
cost with and the cost without disruption, is derived as

�C = C1D − C1N + �C2. (5)

The first term C1D = ∫ T−t0
0 {c1d(t) + csr1s(t) + chI(t) +

cpp(tfulfilled, t) + cl[1 − r2(t) − d(t)]}dt gives the cost
incurred during (0,T − t0), including the production
cost, the contingent sourcing cost, the inventory hold-
ing cost, the compensation cost, and the lost-sale cost.
The second term C1N = ∫ T−t0

0 (c0 + c1 + chI0)dt gives
the cost during (0,T − t0) with no disruption, includ-
ing the production cost, the regular sourcing cost,
and the inventory holding cost. Therefore, the differ-
ence between these two items identifies the disruption
cost during (0,T − t0). The third term �C2 = (c0 +
c1)

∫ T−t0
0 r2(t)dt + c0I0 represents the disruption cost

incurred during (T, Tmax1), including the production
cost of satisfying backlogged demand b(T − t0) and the
recovery cost of refilling safety inventory.

3.3. Mathematical representation of optimal
mitigation strategies

Thepost-disruption state dynamics of backloggeddemand
and inventory in the production-inventory system are
characterised as ḃ(t) and İ(t). r2(t), s(t), p(tfulfilled, t),
and d(t) are the decision variables. The following opti-
mal control model mitigates the disruption impact.

min
{r2(t), s(t), p(tfulfilled ,t), d(t)}

�C. (6)

Subject to ḃ(t) = r2(t), (7)

İ(t) = r1s(t) − d(t), (8)

d(t) ≤ 1 − r2(t), (9)

d(t) ≥ r1s(t), (10)

0 ≤ p(tfulfilled, t) ≤ 1 − r0(t), (11)

0 ≤ r2(t) ≤ u(t), (12)

0 ≤ s(t) ≤ 1, (13)

I(0) = I0, b(0) = 0, (14)

I(T − t0) = 0. (15)

r0(t) = [1 − θ twait]+, where twait = T + b(t)
PC − 1

− t.

(16)

The objective function (6) minimises the disruption
cost �C incurred during (0, Tmax). (7) and (8) cap-
ture the dynamics of the backlogged demand and safety
inventory during (0,T). (9)-(13) give the maximum
and minimum values of the four decision variables. (14)
gives the initial quantities of safety stock and backlogged
demand. Considering that there is no need to adopt
other countermeasures if there is sufficient safety stock,
our attention is only on those cases where inventory
will be fully depleted before time T − t0 (a point in
time before the end of the supply disruption), i.e. (15).
(16) presents how the customers’ partial back-ordering
behaviour without compensation changes in accordance
with the backlogged demand under the ‘First come first
served’ principle.

Table 3 shows the strategies derived from the model.
For notational simplicity, we omit the time indices t and
tfulfilled from this point onwards.

Each optimal joint control decision {s∗, r2∗, p∗, d∗} in
Table 3 represents a type of strategy. 11 types of strategies
are derived as components of constructing the optimal
dynamic mitigation strategies for supply disruptions.
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IH and IL represent two pure strategies of inventory
consumption: {s∗, r2∗, p∗, d∗} = {0, 0, 0, 1}, {0, r0∗, 0,
1 − r0∗}. Themanufacturer resumes production through
safety inventory. Neither contingent sourcing nor com-
pensation is provided. The difference between these two
strategies is the speed of inventory consumption. Under
IH , safety inventory is depleted at the rate of 1 to satisfy
all customers, that is, d∗ = 1 and −İ∗ = 1. As a result,
no lost sale or backorder appears, b∗ remains at b∗(τ0).
Under IL, since some customers who are willing to wait
without incentives, the manufacturer can consume the
inventory at a low rate of 1 − r0∗ to meet the remaining
demand. No lost sale occurs, and b∗ increases at the rate
of r0∗.

SIH and SIL represent two mixed strategies that incor-
porate contingent sourcing and inventory consumption:
{s∗, r2∗, p∗, d∗} = {1, 0, 0, 1}, {1, r0∗, 0, 1 − r0∗}. A con-
tingent sourcing policy is offered to all customers as a
priority, and no compensation is given. The difference
between these two strategies is about how inventory is
consumed. Under SIH , inventory drops at the rate of 1 −
r1 to satisfy all those customers who reject the contingent
sourcing policy. In other words, no backorder is allowed,
i.e. r2∗ = 0. Under SIL, inventory is used for satisfying
1 − r1 − r0∗ demand. Due to the long lead time and
the customers’ behaviour, we might have the following
situation: r0∗ of those customers who refuse the contin-
gent sourcing policy are willing to postpone their orders.
That is, 1 − r1 > r0∗. Under this situation, the manu-
facturer allows this fraction of customers to place back-
orders, then restarts production to meet the remaining
demand.

S0H , S
r
H and SL respectively represent three pure sourc-

ing strategies without compensation and inventory con-
sumption: {s∗, r2∗, p∗, d∗} = {1, 0, 0, r1}, {1, r0∗, 0, r1},
and {(1 − r0∗)/r1, r0∗, 0, 1 − r0∗}. Under S0H and SrH , the
sourcing policy is provided to all customers. The differ-
ence is that the customers who reject this policy are lost
directly in the use of S0H , and r0∗ of them are backo-
rdered automatically in SrH . Under SL, the sourcing policy
is provided to (1 − r0∗)/r1 customers.

PH and PL represent two pure compensation policies
with different levels but without sourcing and inven-
tory consumption: {s∗, r2∗, p∗, d∗} = {0, 1, 1, 0}, {0, 1,
1 − r0∗, 0}. All customers are motivated to place backo-
rders, i.e. r2∗ = 1. In view of the customers’ behaviour,
the compensation is implemented at a lower level in PL
to avoid overcompensation.

SPH and SPL represent two mixed strategies that
incorporate contingent sourcing and compensation: {s∗,
r2∗, p∗, d∗} = {1, 1 − r1, 1 − r1, r1}, {1, 1 − r1, 1 − r1 −
r0∗, r1}. All customers are provided with the contingent
sourcing policy, and the ones who refuse this policy are

backordered through compensation. Similarly, the com-
pensation level in SPL is lower than in SPH .

4. The optimal dynamic mitigation strategies

In this section, we explore the optimal dynamic mitiga-
tion strategy. The optimal joint decisions {s∗, r2∗, p∗, d∗}
with respect to the dynamic optimisation problem (6)-
(16) are solved by Pontryagin’s Maximum Principle
(Seierstad and Sydsæter 1987). First, in view of the inven-
tory dynamics, the problem is decomposed into two
stages: before and after the inventory reaches zero. The
optimal mitigation strategies and their corresponding
time intervals are derived for these two stages. Then,
discussing each state transition based on the co-state vari-
ables, we present the transition conditions that determine
how the optimal strategy changes between the subinter-
vals. Afterward, by combining the optimal strategies for
each time interval during the entire disruption period,
the optimal dynamic mitigation strategies for hedging
against supply failures under diverse circumstances are
developed.

By transferring the minimisation problem into a
maximisation, the Hamiltonian function H(r2, s, d, p, İ,
b, λ1, λ2, t) and the Lagrangian function are defined as

H = −c1d − csr1s − cpp − cl(1 − r2 − d) − chI − (c0
+ c1)r2 + (c0 + c1 + chI0) + λ1r2 + λ2(r1s − d).

(17)

L = H + μ1(d − r1s) + μ2(1 − r2 − d) + μ3s

+ μ4(1 − s) + μ5r2 + μ6(r0 + p − r2) + μ7p

+ μ8(1 − r0 − p). (18)

λ1 and λ2 represent the co-state variables for b and I.
λ1 can be interpreted as the economic value of the back-
logging demand, and λ2 is the shadow price of the safety
inventory. μ1, . . . , μ8 are the Lagrangian multipliers for
the control variables.

Following Pontryagin’s Maximum Principle, the opti-
mal joint control {s∗, r2∗, p∗, d∗} maximises (17) at every
point in time, that is,

H(r2∗, s∗, d∗, p∗, İ∗, b∗, λ1, λ2, t)

= max
r2, s, d, p

H(r2, s, d, p, İ, b, λ1, λ2, t). (19)

The following necessary conditions are required.

∂L/∂r2 = cl − (c0 + c1) + λ1 − μ2 + μ5 − μ6 = 0.

(20)

∂L/∂p = −cp + μ6 + μ7 − μ8 = 0. (21)
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Table 4. The optimal strategies in Inventory Stage 1.

The conditions for optimal strategy

r0 The optimal strategy The co-state λ1 λ2 < cl − c1 λ1 + λ2 < c0 + cp

0 IH constant λ2 < cs
+ IH constant λ1 + λ2 < c0
+ IL F1 λ1 + λ2 > c0
0 SIH constant λ2 > cs
+ SIH constant λ1 + λ2 < c0
0 < r0 < 1 − r1 SIL F1 λ1 + λ2 > c0

Table 5. The optimal strategy in Inventory Stage 2.

The conditions for each strategy

r0 The optimal strategy The co-state λ1 λ1 λ2

0 S0H constant λ1 < M1 + cp > cl − c1
SPH constant cp + M1 < λ1 < cp + M2 > cs
PH constant λ1 > cp + M2

0 < r0 < 1 − r1 SrH F2 M1 < λ1 < cp + M1 > cl − c1
SPL F4 cp + M1 < λ1 < cp + M2 > cs
PL F4 λ1 > cp + M2

r0 ≥ 1 − r1 SL F3 M2 < λ1 < cp + M2 > cs
PL F4 λ1 > cp + M2

∂L/∂d = −c1 + cl − λ2 + μ1 − μ2 = 0. (22)

∂L/∂s = −csr1 + λ2r1 − μ1 + μ3 − μ4 = 0. (23)

dλ1
dt

= −∂L
∂b

= −θ

PC − 1
(μ6 − μ8), if r0 > 0,

dλ1
dt

= −∂L
∂b

= 0, if r0 = 0. (24)

dλ2
dt

= −∂L
∂I

= ch. (25)

Combining (21) with (24), λ1 is defined as
dλ1
dt = − ∂L

∂b = − θ
PC−1 (cp − μ7) if r0 > 0, and λ1 =

constant if r0 = 0.
Due to the un-constrained terminal demand state

b(T − t0), the transversality condition (Seierstad and
Sydsæter 1987) is further required for λ1.

λ1(T − t0) = 0. (26)

The co-state variable λ1 remains constant or drops over
time (the specific expressions are given in Tables 4 and
5), and reaches 0 at the end. When r0 > 0, a number
of customers automatically place backorders. An addi-
tional backorder requires a recovery time 1

PC−1 , thus
the value of holding backorders decreases over time. In
particular, if backorders are facilitated through compen-
sation (here, μ7 = 0 and p > 0 in (31)), the slope of λ1
equals− θ

PC−1cp. The co-state variable λ2 is an increasing
function of t, and equals the inventory holding cost ch.
Then,

λ2 = λ2(0) + cht. (27)

The Lagrangian multipliers μ1, . . . , μ8 must satisfy the
complementary slackness conditions (28)-(31).

μ1 ≥ 0, and μ1(d − r1s) = 0;

μ2 ≥ 0, and μ2(1 − r2 − d) = 0. (28)

μ3 ≥ 0, and μ3s = 0;

μ4 ≥ 0, andμ4(1 − s) = 0. (29)

μ5 ≥ 0, and μ5r2 = 0;

μ6 ≥ 0, and μ6(r0 + p − r2) = 0. (30)

μ7 ≥ 0, and μ7p = 0;

μ8 ≥ 0, and μ8(1 − r0 − p) = 0. (31)

Next, we analyse the optimal joint controls {s∗, r2∗, p∗,
d∗} in (16), along with the necessary conditions that
determine their corresponding time intervals.

Due to the linearity of (17) in all controls, the opti-
mal joint controls {s∗, r2∗, p∗, d∗} can only occur at the
boundaries, that is,

s∗ ∈ {0, 1, d/r1}; r2∗ ∈ {0, r0 + p};
p∗ ∈ {0, 1 − r0, r2 − r0}; d∗ ∈ {1 − r2, r1s}. (32)

(32) can be interpreted as follows. The optimal sourcing
s∗ can obtain three values: theminimum0, themaximum
1, and an undetermined medium value that is obtained
on the boundary of s = d/r1. The manufacturer seeks
no sourcing if s∗ = 0, and provides all customers with
the sourcing strategy in priority if s∗ = 1. The solution
s∗ = d/r1 indicates that the production during the inter-
ruption is resumed by contingent sourcing only, without
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using inventory. For the optimal backorder rate r2∗, we
have two cases. If r2∗ = 0, no backorder occurs dur-
ing the disruption. If r2∗ = r0 + p, the backorder rate is
increased from r0 to r0 + p by providing a compensation
p, where the optimal compensation level p∗ could be the
minimum 0, the maximum 1 − r0, or an undetermined
medium value on the boundary of p = r2 − r0. In addi-
tion to the solution that occurs on the boundary of d =
r1s, the optimal satisfied demand can also be d∗ = 1 − r2,
which means that all unfilled demands are backordered.
Note that r0 is the state-dependent piecewise function
given in (16).

Based on the two states of r0 and the multiple pos-
sible optimal values of each decision variable, there can
be a large number of joint controls. Through an analysis
of the necessary conditions for these joint controls, the
optimal joint controls can be achieved. Next, we further
specify the undetermined potential optimal values intro-
duced in (32) and accordingly construct the optimal joint
controls. To this end, we address the analysis from two
stages.

Due to the monotonicity of the inventory I, there
is a single transition time point, denoted as ti0 where
I = 0 is activated. Accordingly, the optimisation problem
involves the following two stages.
(i) Inventory Stage 1:[0, ti0)

The system maintains a positive amount of safety
stock. As a result of inventory consumption, the satis-
fied demand has to be d > r1s.Based on (32), the optimal
satisfied demand is determined as d∗ = 1 − r2.
(ii) Inventory Stage 2: (ti0,T − t0]

The system carries an empty inventory. Without an
available inventory, demand can only be fulfilled through
contingent sourcing, that is d∗ = r1s.

4.1. The optimal strategy in inventory stage 1

Given d∗ = 1 − r2, the optimal values that need to be
further specified from (32) are s∗, r2∗, p∗. In order to do
this, we substitute d∗ = 1 − r2 into (17), and derive the
Hamiltonian function as

H1 = (λ1 + λ2 − c0)r2 − cpp + (λ2 − cs)r1s − λ2

− chI + c0 + chI0. (33)

By maximising (33), the optimal values of s∗, r2∗, p∗ are
achieved. Then, after analysing the necessary conditions
(20)-(24) for the optimal controls {s∗, r2∗, p∗, d∗ = 1 −
r2}, the optimal decisions in Inventory Stage 1 are shown
in Table 4.

As indicated in Table 4, based on the states of the cus-
tomers’ behaviour (Demand State 1 where r0 = 0 and
Demand State 2 where r0 > 0), the optimal decision in

Inventory Stage 1 can be one of the following four strate-
gies: IH , IL, SIH , and SIL (see the explanation in Table
3). Inventory is consumed at different speeds during the
periods (τki, τko), which is when these strategies are per-
formed, and reaches zero at time ti0. Here, k = 1, . . . , 4.
Therefore, ti0 is identified as ti0 = max{τ1o, τ2o, τ3o, τ4o}.

I0 =
∫ τ1o

τ1i

1dt +
∫ τ2o

τ2i

(1 − r0∗)dt +
∫ τ3o

τ3i

(1 − r1)dt

+
∫ τ4o

τ4i

(1 − r0∗ − r1)dt. (34)

The conditions defining the time intervals are tightly
linked to the cost factors: c0, c0 + cp, cs, cl and the co-
state variables λ1 and λ2. Regarding λ2 as the shadow
price of a unit inventory, and λ1 as the economic value of
an additional backorder, we see: In the process of resum-
ing production to satisfy a unit demand, a total cost of
λ2 + c1 is incurred if raw materials are taken from the
inventory, and a cost of c1 + cs is incurred if contin-
gent replenishments are procured. On the other hand, if
the manufacturer, rather than meeting the demand dur-
ing the interruption, leaves it as a backorder, then the
amount of c0 + c1 will be required to fulfil the order
during the recovery period. Furthermore, if the backo-
rder is generated from compensation, an extra cost cp is
generated on top of c0 + c1. Thus, the costs of a back-
order with and without compensation are c0 + c1 − λ1
and c0 + c1 + cp − λ1, respectively.

The above conditions actually indicate the superior-
ity of the following decisions: satisfying demand with
contingent souring or inventory consumption, backo-
rdering with or without compensation, and allowing lost
demand.
(i) λ2 < cl − c1

The condition guarantees that the consumption of
inventory is superior to doing nothing and incurring lost
sales. Therefore, no lost sale appears in Inventory Stage 1.
(ii) λ1 + λ2 < c0 + cp

That is, λ2 + c1 < c0 + c1 + cp − λ1, the consump-
tion of inventory to satisfy demand is superior to com-
pensating customers for their waiting time. Thus, com-
pensation is excluded under this condition.
(iii) λ2 < cs

Consuming inventory is cheaper than procuring
emergency replenishments. Thus, contingent sourcing
is excluded if this condition is met. On the contrary,
emergency procurement should be employed if λ2 > cs.
Note that, this condition might be opposite to what com-
mon sense suggests. The reason is as follows. Our study
focuses on the case that safety inventory is not sufficient
for dealing with outages. Therefore, the shadow price of
consuming inventory is not only related to the inventory
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holding cost, but also linked to the loss incurred after the
inventory is entirely depleted.
(iv) λ1 + λ2 < c0

That is, λ2 + c1 < c0 + c1 − λ1, the consumption of
inventory is superior to backorderingwithout compensa-
tions. No backorder is allowed under this condition. The
condition answers an important question for the manu-
facturer: whether or not accept backorders in Inventory
Stage 1 while some customers in the market are will-
ing to postpone their purchases without any incentives
(i.e. r0 > 0)? The results suggest that the manufacturer
allows a positive backorder rate, that is, implementing
the strategies IL and SIL if λ1 + λ2 > c0 and r0 > 0. In
particular, if r0 = 0, no customer is willing to backo-
rder automatically, and there is no need to discuss this
question.

Based on the proposed strategies and their corre-
sponding conditions in Table 4, we construct the optimal
dynamic strategy from the beginning of disruption.

At the occurrence of disruption, no backorder has
accumulated in the production system, thus, customers
who chose to postpone their orders will be satisfied
immediately after supply resumes at time T. That is,
twait(0) = T, and r0(0) = [1 − θT]+ customers are will-
ing to backorder without compensation. With the initial
state of the customers’ behaviour, we shed light on the
initial strategy for alleviating disruption.

Proposition 1: (the initial strategy)The optimal strategy
starts at t = 0 with

(i) IH or SIH, if (a) θT ≥ 1 or (b) θT < 1 and λ1(0) +
λ2(0) < c0;

(ii) IL or SIL, if θT < 1 and λ1(0) + λ2(0) > c0.

It is preferable for the manufacturer to satisfy all
demand at the occurrence of disruption through pure
inventory consumptionIH or the combination policy SIH ,
if we have one of the following two scenarios. (a) θT ≥
1: The disruption is too long or customers are sensitive
so that no one is willing to wait without any compen-
sation. (b) θT < 1 and λ1(0) + λ2(0) < c0: some cus-
tomers are willing to backorder without compensation.
Nonetheless, the economic value of placing a backorder is
less than the cost of consuming inventory. Therefore, no
backorder or lost sale should occur. Conversely, if θT <

1 and λ1(0) + λ2(0) > c0, partial backordering is more
advantageous.

As disruption continues, the inventory and the back-
logged demand dynamically change, along with the value
of backlogging a demand and consuming a unit of inven-
tory. Consequently, the initial strategy may no longer
be advantageous. As stated in Table 4, while inventory
remains positive in Inventory Stage 1, there are two
types of time points when transitions between strate-
gies might occur: when the state of backlogged demand

Figure 2. Possible transitions between strategies in Inventory Stage 1.
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changes or when the conditions defined by the co-state
variables λ1 and λ2 of backlogged demand and inven-
tory are no longer fulfilled. By analysing the correspond-
ing dynamics of r0, λ1 and λ2 under the implementa-
tion of each strategy, we determine when and how to
switch the optimal strategies in Inventory Stage 1, as pre-
sented in Figure 2 (the analysis is detailed in the online
supplement).

As depicted in Figure 2, transitions between strategies
in Inventory Stage 1 are as follows:

(i) In Demand States 1–2: the optimal strategy changes
from IH and IL into SIH and SIL at time ts1 whenλ2 =
cs is activated (transition 4©). In other words, regard-
less of the state of customers’ behaviour, contingent
sourcing should be employed on top of inventory
consumption at the critical time when the shadow
price of inventory exceeds the contingent sourcing
cost cs.

(ii) In Demand State 2 where r0 > 0: The optimal strat-
egy changes from IH into IL at time til when λ1 +
λ2 = c0 is activated (transition 3©).

(iii) At the critical time when the demand state changes
from 1 into 2 (transition 1©): the optimal strategy
changes from IH and SIH into IL and SIL during the
period where λ1 + λ2 > c0.

The following managerial insights are observed from
Figure 2.

Proposition 2: When the system holds inventory,

(i) it is never optimal to provide compensation for back-
orders;

(ii) contingent sourcing is employed on top of inventory
consumption in the time interval where λ2 > cs. In
particular, the contingent sourcing is implemented
from the outset if λ2(0) > cs.

(iii) It is optimal not to backorder unless λ1 + λ2 > c0
and r0 > 0.

It is worth noting that when themanufacturer still carries a
positive inventory, it is profitable to backlog demands if the
customers are willing to place backorders without any com-
pensation, and the value of backlogging demand is superior
over meeting demand via inventory.

4.2. The optimal strategy in inventory stage 2

Like Section 4.1, we start the analysis with specifying the
optimal values of s∗, r2∗, p∗. According to (32), the opti-
mal satisfied demand d∗ = r1s includes two scenarios: (a)
d∗ = r1s = 1 − r2; (b) d∗ = r1s < 1 − r2.

(a) Substituting d∗ = r1s into (17), the Hamiltonian
function is derived as

H2 = [cl − (c0 + c1) + λ1]r2 − cpp+ (−c1 − cs + cl)

× r1s − cl + (c0 + c1 + chI0). (35)

(b) Substituting r1s = 1 − r2 into (32),

H3 = (λ1 + cs − c0)r2 − cpp − cs + c0 + chI0. (36)

By maximising (35) and (36), the optimal values of
s∗, r2∗, p∗ are obtained in the above two scenarios.
Then, by analysing the necessary conditions (20)-(24)
for {s∗, r2∗, p∗, d∗ = r1s = 1 − r2} and {s∗, r2∗, p∗, d∗ =
r1s < 1 − r2}, the optimal joint decisions in Inventory
Stage 2 are determined. The results include six types of
optimal strategies and the corresponding conditions, as
given in Table 5.

In view of the customers’ behaviour (Demand State
1 where r0 = 0 and Demand State 2 where r0 > 0), the
optimal decision manufacturer should make in Inven-
tory Stage 2 falls into three forms of pure sourcing S0H ,
SrH , SL, two forms of pure compensation PH , PL, and two
forms of mixed strategies SPH , and SPL (see the expla-
nation in Table 3). The conditions mainly depend on the
cost factors and the co-state variable λ1, which determine
the priority among the following four decisions: satisfy-
ing demand with contingent souring, backordering with
or without compensation, and letting demand be lost
sales.
(i) λ1 > cp + c0 − cs

Together with cs + c1 < cl, we see that cp + c0 − λ1 <

cs < cl − c1. Backordering with compensation has more
advantages than other choices. Therefore, the pure com-
pensation policies PH and PL are implemented, and no
lost sale occurs. In particular, if r0 > 0, some customers
are willing to backorder without compensation, thus PL
should be employed to avoid overcompensation.

(ii) cp + c0 + c1 − cl < λ1 < cp + c0 − cs and r0 < 1 −
r1

Backordering with compensation is superior to incur-
ring lost sales, but inferior to sourcing. Thus, sourcing
is the first option offered to all customers. Then, for
the remaining customers 1 − r1, compensation is pro-
vided to motivate growth in the backorder rate from
r0 to 1 − r1. That is, the strategies SPH and SPL are
applied.
(iii) λ1 > cp + c0 − cs and r0 ≥ 1 − r1

If 1 − r1 = θ t0 ≤ r0, the lead time is not too long, and
no customer is willing to automatically postpone his/her
orders after having refused to wait for delayed deliv-
ery from contingent sourcing. Under this situation, the
combination of sourcing and compensation will never



1524 S. LI ET AL.

happen. Therefore, pure sourcing SL is employed since
λ1 > cp + c0 + c1 − cl.

(iv) λ1 > cp + c0 + c1 − cl
That is, cp + c0 − λ1 > cl − c1 > cs. Satisfying demand

with contingent souring has more advantages than other
choices. Therefore, pure sourcing policies S0H and SrH are
implemented.

Similar to Figure 2, Figure 3 is also presented to
explain how the optimal strategies switch in Inventory
Stage 2 (the analysis is detailed in the online supple-
ment). Together with the terminal value λ1(T − t0) = 0,
the optimal terminating strategy is determined as shown
in Proposition 3.

Proposition 3: (the terminating strategy) At the end of
available contingent sourcing, the optimal strategy termi-
nates with

(i) pure compensation, if cp + c0 < cs;
(ii) a combination of compensation and sourcing, if cs <

cp + c0 < cl − c1 and t0 >
r0(T−t0)

θ
;

(iii) pure sourcing if (a) cs < cp + c0 < cl − c1 and t0 <
r0(T−t0)

θ
; (b) cp + c0 > cl − c1 > cs.

Where, r0(T − t0) =
[
1 − θ

b(T−t0)
PC−1

]+
.

As illustrated in Proposition 3, the cost factors hugely
determine the optimal terminal strategy. Pure compensa-
tion is activated at the termination time if the compensa-
tion cost is small. Conversely, pure ‘Sourcing’ is preferable
at the end of available contingent sourcing if the cost
and the lead time t0 offer a significant advantage. Oth-
erwise, the combination of compensation and sourcing
is realised.

4.3. The optimal transitions between strategies at
time ti0

In order to construct the optimal dynamic strategies for
the entire disruption period, we need to combine the
strategies of Inventory Stages 1 and 2. That is, it is impor-
tant to address the following discussion: Is it possible for
the optimal dynamic strategy to switch from IH , IL, SIH ,
and SIL to S0H , S

r
H , SL, SPH , SPL, PH , and PL at the critical

time ti0 where inventory reaches zero?
Note that, since the inventory state changes at time

ti0, a jump of the co-state variable λ2 might occur. The
following jump condition (Seierstad and Sydsæter 1987)

Table 6. The condition of transitions at time ti0.

Possible transitionsbetween strategies

From To Condition for each transition

IH SPH λ2
− = cs and λ1

+ = −cs + c0 + cp
PH λ2

− = cp + c0 − λ1
+

IL PL λ2
− = cp + c0 − λ1

+
SPL λ2

− = cs and r0(ti0) = 1 − r1
SL λ2

− = cs
SrH λ2

− = cs and r0(ti0) = 1 − r1

SIH S0H λ2
− = cl − c1

SPH λ2
− = −λ1

+ + c0 + cp
SIL SrH λ2

− = cl − c1
SPL λ2

− = cp + c0 − λ1
+

Where, λ2− = λ2(tio−) and λ1
+ = λ1(ti0+).

holds:

H(r2∗(ti0−), s∗(ti0−), p∗(ti0−), d∗(ti0−), b∗(ti0−),

I∗(ti0−), λ1(ti0−), λ2(ti0−), ti0)

= H(r2∗(ti0+), s∗(ti0+), p∗(ti0+), d∗(ti0+),

b∗(ti0+), I∗(ti0+), λ1(ti0+), λ2(ti0+), ti0). (37)

In view of the continuity property of the demand state
variable b, together with the jump condition (37), we
compare the terminating conditions of Inventory Stage
1 with the entering conditions of Inventory Stage 2,
and exclude the impossible candidates for entering into
Inventory Stage 2 in Figure 4. The condition for each
possible transition is given in Table 6.

As indicated in Figure 4 and Table 6, each transition is
determined by the critical economic value of facilitating
an additional backorder and consuming inventory at the
critical time ti0.

4.4. The optimal dynamic strategies during
disruption

After establishing the optimal dynamic strategies in
Inventory Stages 1 and 2 according to the customers’
behaviours (Demand States 1 and 2), and the transi-
tions between strategies at the time when the inventory
is fully depleted, we comprehensively present the opti-
mal dynamic mitigation strategies for the entire period
(0,T − t0), as shown in Figure 5.

As depicted in Figure 5, the optimal dynamic strategies
fall into two cases, dependent on the customers’ sensitiv-
ity θ to the waiting time, the lead time t0 of contingent
sourcing, and the manufacturer’s production capacity PC
after the end of disruption: Case 1 where θ t0 < PC −
1 and Case 2 where θ t0 > PC − 1. In each case, three
portfolios of optimal dynamic strategies are established
dependent on the cost factors.

In particular, no contingent sourcing should be
employed at any point in time during disruption, if
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Figure 3. Possible transitions between strategies in Inventory Stage 2.

Figure 4. Impossible transitions between strategies at time ti0.

the compensation cost exhibits a significant advan-
tage, i.e. cp + c0 < cs. Conversely, if cp + c0 > cl − c1
and λ1(ti0+) < cp + c0 − cl + c1, compensation should
be excluded from the entire period.Otherwise, a dynamic
mixed strategy that jointly adjusts the time and quantity
(level) of the following decisions is realised: backlogging
demand, contingent sourcing, and customer compensa-
tion.

Each optimal dynamic strategy is represented by a
path from the initial time 0 to the terminal time T −
t0(see Figure 5), as constructed by 11 types of strategy
components: IH , IL, SIH , SIL, S0H , S

r
H , SL, SPH , SPL, PH ,

and PL. The strategy components are given in closed
forms and explained in Table 3. They provide specific
guidance for the manufacturer on the real-time joint
decision. The conditions under which the paths are

optimal to manage supply disruptions are presented in
closed forms. They consist of the initial condition criti-
cally linked to the disruption length (Proposition 1), the
transition condition defined by the state dynamics and
co-state variable of backlogged demand and inventory
(Figures 2–4), and the terminating condition given by the
cost factors (Proposition 3).

As we observe the possible paths based on the ini-
tial state of the customers’ behaviour, i.e. twait(0) = T,
an important insight is also revealed. For short disrup-
tions, the optimal dynamic strategies are mainly com-
posed of pure strategies such as IH , IL, S0H , S

r
H , SL, PH ,

and PL. As opposed to this, as for long disruptions, the
combined strategies that simultaneously incorporate two
countermeasures (SPH , SPL, SIH , SIL) are required during
some periods. In particular, by controlling the customers’
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Figure 5. The optimal dynamic strategies during disruption.

behaviour at the state of r0 = 0, Corollary 1 presents the
optimal dynamic strategies for hedging against relatively
long disruptions.

Corollary 1: (i) It is preferable to employ the dynamic
strategy IH − SIH − SPH, if cs < cp + c0 < cl − c1, t0 <

min{ chI0
(c0+cp−cs)θ ,

1
θ
}, and

T ≥ max
{
PC − 1
θ2t0

+ ti0 + t0,
1
θ

+ ti0 + t0
}
, where

ti0 = I0 + (1 − θ t0)
c0 + cp − cs

ch
. (38)

(ii) It is preferable to employ SIH − SPH, if cs < cp +
c0 < cl − c1, chI0

(c0+cp−cs)θ < t0 < 1
θ
, and

T ≥ max
{
PC − 1
θ2t0

+ I0
θ t0

+ t0,
1
θ

+ I0
θ t0

+ t0
}
. (39)

(iii) It is preferable to employ IH − PH, if cp + c0 < cs, and

T ≥ 1
θ

+ I0 + t0. (40)

If the disruption lasts extremely long that no customer
is willing to backorder at any time without compensa-
tion, priority is given to the following countermeasures.
(a) If cs > cp + c0, production is resumed to meet all
demand in Inventory Stage 1, then all customers are imme-
diately compensated at the maximum level in Inventory
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Stage 2. (b) If cs < cp + c0 < cl − c1, contingent sourc-
ing is utilised while inventory is consumed or customers
are compensated. In particular, if the lead time is long,
the contingent sourcing policy should be provided imme-
diately at the beginning of the disruption to overcome
this shortfall. Observing (38)-(40), we also find that the
advisability of utilising SIH − SPH grows with θ and cp,
and drops with cs. In other words, the manufacturer
should reroute to secondary replenishments while consum-
ing inventory from time t = 0 even if the disruption will
not last extremely long or the lead time is short due to one
of the following events happens: customers become impa-
tient; the sourcing cost is small; the compensation cost is
large.

4.5. Numerical analysis

In order to illustrate the approach and value of differ-
ent strategies, we conduct a numerical analysis to visually
present the optimal dynamic mixed strategies for one
sub-scenario and generate further insights into the roles
of parameters, such as the lead time t0 and the cost csof
contingent sourcing, the compensation cost cp, and the
disruption length T.

As indicated in Figure 5, neither contingent sourcing
nor customer compensation should be employed dur-
ing disruption if the compensation or sourcing cost is
extremely small. Therefore, to present a more general
illustration, we consider the following sub-case (Case
2(b-2) in Figure 5): cs < cp + c0 < cl − c1, λ1

+(ti0) >

−cs + c0 + cp, and θ t0 > PC − 1. Thatmeans, both com-
pensation and contingent sourcing have certain advan-
tages in terms of cost, but the lead time of contingent
sourcing is relatively long (this sub-case is commonwhen
contingent sourcing is offshore). To this end, we establish
a basic set as follows: PC = 1.5, c0 = 10, cl = 100, c1 =
10, ch = 0.2, θ = 0.01, I0 = 100. Our model is continu-
ously time-dependent and the demand rate is normalised
as ‘1’. By assuming that a time unit is one hour, the basic
setting stands for the following circumstance: a manufac-
turer produces and sells 24 units of products per day, and
carries around 4.2 days of safety stocks in raw materials,
while customers in the market will renounce their will-
ingness to wait without any incentive countermeasures
in 4.2 days. Note that all the strategies are presented in
closed form, and the following main findings still hold
under other settings. The numerical analysis based on
this specific setting is mainly to visually illustrate how
the approach and strategies proposed in this study can
be utilised in practice.

According to Figure 5 (Case 2(b-2)), the optimal
dynamic strategies under this setting could be in multi-
ple paths constructed by IH , IL, SIH , SIL, SPH , SPL. Let the

compensation cost, the cost and lead time of contingent
sourcing, and the disruption length vary.We first observe
how the structure of optimal dynamic strategies will
change according to these factors, as shown in Figure 6.

In Figure 6, the blank part represents the other paths
given in Case 2 (b-1). The results show that when the
contingent sourcing cost is relatively small (Case 2 (b-
2)), the optimal strategies mainly are of three forms: the
dynamic strategies SIH − SPH and IH − SIH − SPH for
long supply failures, and IH − SIH − SIL − SPL for rela-
tively short disruptions with a high compensation cost.
In other words, it is optimal to implement contingent
sourcing from time ts1 before the inventory is used up,
or from the beginning of the disruption. As the lead
time or the sourcing cost increases, the advisability of
utilising such strategies decreases. As a further illustra-
tion, Figure 7 presents the specific joint decisions of IH −
SIH − SIL − SPL under cs = 15, t0 = 65, and cp = 45,
and the variation trends for different disruption lengths.

In Figure 7(a), the x-axis is the time after the appear-
ance of supply failure. The y-axis presents the optimal
dynamic joint decision: the inventory dynamics I∗ from
I0 =100, and the zoomed lines (r∗2 , s∗, p∗) in (0,1). The
corresponding dynamics of the backlogged demand and
customer behaviour are also presented. The result pro-
vides the following suggestions for the manufacturer. In
the first period (0, tr0) of disruption, no customer is will-
ing to backorder without compensation due to the long
waiting time. In order to avoid lost sales, the manufac-
turer adopts the strategy IH − SIH : resuming production
through the inventory to meet the total demand ‘1’ at
the first phase (0, ts1), then utilising contingent sourc-
ing in conjunction with the inventory at the second phase
(ts1, tr0). By doing so, no lost sale or backlogged demand
is incurred. As a result, the customers who arrive sub-
sequently in the second period will experience a shorter
waiting time, and r∗0 of them are willing to postpone pur-
chases. Hence, during the second period (tr0, ti0), the
manufacturer should accept backorders and satisfy the
customers who are not willing to wait, i.e. he should
utilise the strategy SIL. After the safety inventory is used
up at time ti0, the strategy SPL is adopted. That is, we
first provide the contingent sourcing policy to all cus-
tomers. Then, for the ones who refuse this policy, we
provide a level of 1 − r1 − r∗0 compensation to have them
backorder.

Figure 7(b) shows how these decisions change with
different disruption lengths. Note that, in the process of
using IL − SIH − SIL − SPH , the contingent sourcing is
always provided to all customers as a priority after time
ts1. Therefore, we focus on the variation trend of ts1 with
T − t0. As the disruption length T increases, the results
point towards two suggestions: the speed of consuming
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Figure 6. The optimal dynamic strategies under different cp, cs, T and t0.

inventory should be reduced; the backorders should be
allowed later and the contingent sourcing should be
implemented earlier.

Next, by taking the strategies IH − SIH − SPH and
SIH − SPHas examples, we address a comparison analy-
sis between our proposed dynamic mixed strategies and
other pure strategies. To this end, we consider three com-
monly utilised pure strategies (as summarised earlier in
our overview of the existing literature): I − P, I − S, and
I − N, indicating the following countermeasures during
disruption. First, using inventory to satisfy all demands.
Then, compensating customers at the level of ‘1’ and
backlogging all demands (i.e. I − P), contingent sourc-
ing to satisfy customers and letting the ones who reject
this policy be lost sales (i.e. I − S), or doing nothing and
losing all sales (i.e. I − N). Figure 8 depicts the disrup-
tion impact �C under these strategies and our proposed
strategies.

Two findings are observed in Figure 8. First, by using
the dynamic mixed strategy IH − SIH − SPH , the manu-
facturer can benefit from stock-outs under some circum-
stances. The reason is as follows. The benchmark of eval-
uating the disruption impact is the total cost of themanu-
facturer carrying I0 units of safety stocks when no disrup-
tion occurs. Therefore, an interesting case might occur. If
the compensation cost is small enough, themanufacturer
can satisfy customers at a lower cost than holding safety
inventory would have cost him. Second, compared with
the other three pure strategies, by using optimal mixed
strategies during the first 29 days to manage a 32-days

disruption, the loss can be reduced by 50% at the mini-
mum and 86% at the maximum(Figures 8(c)-(d)), unless
the compensation cost or the contingent sourcing cost
is extremely small (Figures 8(a)-(b)). We also observe
that the reduced loss through these two mixed strategies
increases with the disruption length. The result confirms
the importance of developing such combined strategies
when hedging against disruptions.

5. Managerial insights

In this paper, we consider a make-to-order system where
demand is deterministic but sensitive to both the price
and the delivery time. Themanufacturer procures from a
single unreliable supplier and carries a certain amount of
rawmaterials as a precaution,while there is an emergency
supplier with a high price and a lead time in the market.
By incorporating proactive inventory consumption, reac-
tive supply-side sourcing, and demand-side compensa-
tion,we analytically investigate the optimal joint dynamic
disruption-management decision for the manufacturer,
taking customers’ dynamic state-dependent backorder-
ing behaviour into consideration. Our results render the
following insights for decision-makers.

(1) When the system holds positive stocks: no com-
pensation should be offered to customers. However,
contingent replenishments should be taken in con-
junction with inventory consumption, i.e. utilising
the combination strategies SIH and SIL during those
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Figure 7. The optimal dynamic strategy IL − SIH − SIL − SPH under cs = 15, cp = 45 and different T.

periods when the sourcing cost is less than the
shadow price of utilising safety inventory. Further-
more, in the process of practicing these two com-
bination strategies, the contingent sourcing strategy
should always be first offered to customers. We only
consider satisfying those customers who reject to
wait for contingent sourcing through inventory.

(2) At the occurrence of disruption, there are four
options to choose from for the initial strategy: the
pure inventory consumption strategies IH and IL,

and the combination strategies SIH and SIL, mainly
determined by the disruption length and the initial
value (price) of backordering and consuming inven-
tory. It is not always advisable to consume inven-
tory to meet all demands. If the disruption will not
last long and the economic value of holding a unit
backorder exceeds the shadow price of a unit inven-
tory, it is preferable for the manufacturer to accept
backorders without providing compensation. The
contingent sourcing policy should be employed from
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Figure 8. The impact differences between utilising pure strategies and mixed strategies for long disruptions.

the outset if it shows a significant advantage in terms
of cost and lead time.

(3) At the end in time when the contingent sourcing
is available, there are seven options from which to
choose for a termination strategy: the pure sourcing
strategies S0H , S

r
H , and SL, the combination strate-

gies SPH and SPL, the pure compensation strategies
PH and PL, mainly determined by the cost factors of
sourcing and compensation.

(4) Cost and time factors play different roles when
designing optimal dynamic mitigation strategies.
The cost factors mainly determine the time inter-
vals for contingent sourcing, demand backlogging,
and customer compensation. The question of how
to dynamically adjust the backorder rate, sourcing
quantity, compensation level, and inventory con-
sumption rate is essentially determined by time fac-
tors such as the lead time of sourcing, customer
sensitivity to waiting time, and the disruption dura-
tion.

(5) Only when compensation (or contingent sourcing)
is significantly advantageous in terms of cost (cost
and lead time), it is optimal to purely compensate
customers (or contingent sourcing) after the inven-
tory has been used up. Otherwise, the optimal is
to construct a dynamic strategy based on our pro-
posed 11 types of strategy components and their
corresponding time intervals.

(6) For short disruptions, the optimal dynamic strate-
gies are mainly composed of pure strategies. As for
long disruptions, it is optimal to implement the com-
bined strategies that simultaneously incorporate two
countermeasures (such as SPH , SPL, SIH , SIL) during
some periods.

6. Conclusions

Contingent sourcing and safety inventory are two com-
monly employed supply-side strategies. Compensation
(such as responsive price discounts) is a well-utilised
strategy to further reduce the negative impact of dis-
ruption from the demand-side. On the other hand,
there is a critically growing interest in both the litera-
ture and practice to develop mixed or dynamic strate-
gies that outperform the existing pure (static) strategies,
taking customers’ dynamic behaviours into considera-
tion. Therefore, we investigate the optimal joint dynamic
disruption-management decision for the manufacturer,
incorporating compensation, contingent sourcing, and
inventory consumption.

We consider the disruption impact from two peri-
ods: disruption duration and disruption recovery. Dur-
ing the disruption, four types of customers’ reaction are
taken into account: the placement of a backorder due
to compensation, the placement of a backorder without
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compensation (the customers’ state-dependent backo-
rdering behaviour, linked to the state of backlogged
demand and their patience on waiting time), the cus-
tomers are satisfied through inventory in real-time or
through contingent souring after lead time, or the cus-
tomers will not purchase. During recovery, the manufac-
turer satisfies the accumulated demand in the order of
arrival by using his maximum production capacity (the
recovery capacity) and refills safety inventory. By captur-
ing the dynamic states of backlogged demand and inven-
tory along with the customers’ state-dependent backo-
rdering behaviour, an optimal control model is proposed
for minimising the disruption impact.

By using the Pontryagin’s Maximum Principle, 11
types of optimal strategies are proposed in closed form.
They help with the following joint decision: the dynamic
compensation level, the dynamic quantity of contingent
sourcing, and the dynamic speed at which safety inven-
tory is consumed. It is worth noting that the results also
indicate that the contingent sourcing policy is always
announced to customers before other policies in the pro-
cess of realising the combination strategies. The condi-
tions under which the manufacturer should implement
these strategies are presented as well. The transition
conditions indicating how to change the above strate-
gies according to the state of demand and inventory are
also presented in closed form. They provide analytical
guidance on how to jointly adjust the optimal strategy
from the initial time of the supply disruption. Further-
more, via numerical analysis, we compare the established
strategies with other alternative strategies and visually
indicate howmuch disruption loss can be reduced under
our strategies.

This study suggests several directions for future
research. One possibility is the consideration of long-
term losses in the design of mitigation strategies, for
instance, fewer future orders. Another idea is the incor-
poration of partial backordering behaviour and interac-
tion among customers. In addition to time and price, the
customers’ interaction through online reviews and social
networking also significantly affects their reactions to dis-
ruptions. Third, our model is limited to a pre-disruption
deterministic demand and a deterministic disruption. An
interesting and valuable research direction would be to
analyse the problem in the presence of random demand
or random disruptions.
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Online Supplement 

Appendix 

Part A presents the calculation of Table 4, Parts B-C presents the calculation of Table 5, 

Part D presents the proof of Figures 2-3, and Part E presents the calculation of Table 6 and 

the proof of Corollary 1. 

Part A:  Calculation of Table 4 

In Part A, we determine the optimal strategies in Inventory Stage 1 with two steps. In 

step 1, we maximize (33) to achieve 𝑠∗, 𝑟2
∗, 𝑝∗  under  𝑑∗ = 1 − 𝑟2 > 𝑟1𝑠 . The optimal 

strategies without losing sales (that is, under the constraint of  𝑑∗ = 1 − 𝑟2) are established. 

The optimal paths corresponding to these decisions, describing the dynamics of backlogged 

demand and inventory, are also given in closed forms. In step 2, We analyze the necessary 

conditions (20)-(31) that each decision {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗ = 1 − 𝑟2} requires to be optimal. 

The time intervals of each optimal strategy, defined by the necessary conditions in Table 

A5, are finally achieved for Table 4. 

(i) The optimal {𝒔∗, 𝒓𝟐
∗, 𝒑∗, 𝒅∗} under 𝒅∗ = 𝟏 − 𝒓𝟐 > 𝒓𝟏𝒔 

According to (32), together with 𝑑 > 𝑟1𝑠, the optimal 𝑠∗  is achieved as 𝑠∗ = 1 or 

𝑠∗ = 0. Based on (33),  𝜕𝐻/𝜕𝑠 = (𝜆2 − 𝑐𝑠)𝑟1. Thus, 

 𝑠∗ = 1 if 𝜆2 > 𝑐𝑠, and 𝑠∗ = 0 if 𝜆2 < 𝑐𝑠.                                (A1) 

 On the other hand, 𝜕𝐻/𝜕𝑟2 = 𝜆1 + 𝜆2 − 𝑐0 indicates that 

𝑟2
∗ = 𝑟0 + 𝑝  if  𝜆1 + 𝜆2 > 𝑐0, and  𝑟2

∗ = 0  if   𝜆1 + 𝜆2 < 𝑐0.                    (A2) 

Substituting 𝑟2
∗ = 𝑟0 + 𝑝 into (30), the Hamiltonian function is derived as 

𝐻 = (𝜆1 + 𝜆2 − 𝑐0)𝑟0 + (𝜆1 + 𝜆2 − 𝑐0 − 𝑐𝑝)𝑝 + (𝜆2 − 𝑐𝑠)𝑟1𝑠 − 𝜆2 − 𝑐ℎ𝐼 + 𝑐0 + 𝑐ℎ𝐼0.  

(A3) 

Accordingly, we have 𝜕𝐻/𝜕𝑝 = 𝜆1 + 𝜆2 − 𝑐0 − 𝑐𝑝 . Hence, the optimal control 𝑝∗ to 

maximize (A3) is  

𝑝∗ = 1 − 𝑟0 if   𝜆1 + 𝜆2 > 𝑐𝑝 + 𝑐0,  and  𝑝∗ = 0 if 𝜆1 + 𝜆2 < 𝑐𝑝 + 𝑐0.        (A4) 

Summing up, and substituting 𝑟2
∗ into 𝑑∗, the Hamiltonian function (33) is maximized 

at the following  {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗}, as shown in Table A1. The inventory consumption rate 

−𝐼∗̇ is accordingly calculated. 
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Table A1. The optimal controls {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} and the corresponding  

−𝐼∗̇ under 𝑑∗ = 1 − 𝑟2 > 𝑟1𝑠. 

Scenario 𝑠∗ 𝑟2
∗ 𝑝∗ 𝑑∗ −𝐼∗̇ The condition 

A(i) 0  0 0 1 1 𝜆2 < 𝑐𝑠  𝜆1 + 𝜆2 < 𝑐0 

A(ii) 𝑟0 0 1 − 𝑟0 1 − 𝑟0  𝑐0 < 𝜆1 + 𝜆2 < 𝑐0 + 𝑐𝑝  

A(iii) 1 1 − 𝑟0 0 0  𝜆1 + 𝜆2 > 𝑐0 + 𝑐𝑝  

A(iv) 1  0 0 1 1 − 𝑟1 𝜆2 > 𝑐𝑠  𝜆1 + 𝜆2 < 𝑐0 

A(v) 
𝑟0 0 1 − 𝑟0 1 −

𝑟0 − 𝑟1  

 𝑐0 < 𝜆1 + 𝜆2 < 𝑐0 + 𝑐𝑝  

A(vi) 1 1 − 𝑟0 0 < 0  𝜆1 + 𝜆2 > 𝑐0 + 𝑐𝑝  

    In view of  𝑑∗ = 1 − 𝑟2 > 𝑟1𝑠, we see that the inventory decreases over time during 

Inventory Stage 1. Therefore, Scenarios A(iii) and A(vi) cannot happen. Scenario A(v) 

requires an extra condition  

1 − 𝑟0 > 𝑟1.                                                  (A5) 

Considering that the backorder rate without compensation could be 𝑟0 = 0 or 𝑟0 > 0, the 

optimal controls are further specified as in Table A2. Four types of strategies are developed. 

Table A2. The optimal controls {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} and the corresponding strategy in 

Inventory Stage 1. 

𝑟0 Scenario 𝑠∗ 𝑟2
∗ 𝑝∗ 𝑑∗ −𝐼̇∗ 

The notation of 

the strategy 

0 
A(i)(ii) 0 0 0 1 1 𝐼𝐻 

A(iv)(v) 1 0 0 1 1 − 𝑟1 𝑆𝐼𝐻 

+ 

A(i) 0 0 0 1 1 𝐼𝐻 

A(ii) 0 𝑟0 0 1 − 𝑟0  1 − 𝑟0 𝐼𝐿 

A(iv) 1 0 0 1 1 − 𝑟1 𝑆𝐼𝐻 

A(v) 1 𝑟0 0 1 − 𝑟0  1 − 𝑟0 − 𝑟1 𝑆𝐼𝐿 

Where, strategy 𝑆𝐼𝐿 only happens if the customers’ reaction falls into the cases with   0 <

𝑟0 < 1 − 𝑟1.     

Next, we present how the backlogged demands accumulate during the implementation 

of the above strategies. As indicated by state equation (6), backorders are accumulated at 

the rate 𝑟2
∗ during the use of mitigation strategies. Therefore, the optimal path 𝑏∗ capturing 

the total backlogged demand is described by two expressions in Inventory Stage 1.  

(a) The  𝒃∗ under  𝒓𝟐
∗ = 𝟎 

That is, 𝑑𝑏∗/𝑑𝑡 = 0. No backorder arises, thus, the optimal path 𝑏∗ remains constant. 
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𝑏∗ = 𝑏∗(𝜏0), denoted as  𝑓1.                                      (A6) 

𝜏0 is the entry point  of the time interval with  𝑟2
∗ = 0.  

(b) The  𝒃∗ under  𝒓𝟐
∗ = 𝒓𝟎 > 𝟎  

Given 𝑟2
∗ = 𝑟0 = 1 − 𝜃(𝑇 +

𝑏∗

𝑃C−1
− 𝑡) > 0, together with the state equation (6), 𝑏∗ is 

identified by the linear differential equation 

𝑑𝑏∗/𝑑𝑡 = 1 − 𝜃(𝑇 +
𝑏∗

𝑃C−1
− 𝑡).                                      (A7) 

Solving this equation, 𝑏∗ is achieved as 

𝑏∗ = 𝐶0 𝑒
−

𝜃𝑡

𝑃C−1 +
𝑃C−1

𝜃
(2 − 𝑃C − 𝜃𝑇 + 𝜃𝑡), denoted as  𝑓2,                (A8) 

where 𝐶0 is a constant to be determined by the initial value of  𝑏  at the entry point 𝜏1 to 

the time interval of 𝑟2
∗ = 𝑟0. According to (A8), we see that  

𝑏∗(𝜏1) = 𝐶0 𝑒
−

𝜃𝜏1
𝑃C−1 +

𝑃C−1

𝜃
(2 − 𝑃C − 𝜃𝑇 + 𝜃𝜏1).  

Therefore,  

𝐶0 = 𝑒
𝜃𝜏1

𝑃C−1[𝑏∗(𝜏1) −
𝑃C−1

𝜃
(2 − 𝑃C − 𝜃𝑇 + 𝜃𝜏1)].                     (A9) 

(ii) The conditions for {𝒔∗, 𝒓𝟐
∗, 𝒑∗, 𝒅∗} under 𝒅∗ = 𝟏 − 𝒓𝟐 > 𝒓𝟏𝒔 

For each optimal solution {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗ = 1 − 𝑟2}, the necessary conditions (20)-(24) 

regarding the co-state variables 𝜆1  and 𝜆2  must be met. By exploring these necessary 

conditions, together with the conditions given in Table A1, the time intervals for each 

optimal strategy defined by 𝜆1 and 𝜆2 can be deduced. However, as indicated in (20)-(24), 

the Lagrangian multipliers 𝜇1,…, 𝜇8 are incorporated into the dynamics of these two co-

state variables. Therefore, we next discuss both the necessary conditions and the 

complementary slackness conditions to determine the time intervals for each optimal 

strategy. 

(a) The necessary conditions for 𝝀𝟏 

The equations linked to 𝜆1 are (20), (21), and (24). First, according to (20), we find:  

𝜆1 > 𝑐0 + 𝑐1 − 𝑐𝑙  if   −𝜇2 + 𝜇5 − 𝜇6 < 0;  and 𝜆1 < 𝑐0 + 𝑐1 − 𝑐𝑙  if   −𝜇2 + 𝜇5 − 𝜇6 >
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0. Then, combining (19) and (21), the derivative 
𝑑𝜆1

𝑑𝑡
 of the co-state variable 𝜆1 under 𝑟0 >

0 can be derived as 𝜆1̇ = 𝜇7 − 𝑐𝑝 = −𝜇6 + 𝜇8.               

(b) The necessary conditions for 𝝀𝟐 

(22) and (23) give the necessary conditions for 𝜆2: 𝜆2 < 𝑐𝑙 − 𝑐1 if  𝜇1 − 𝜇2 < 0; and 

𝜆2 > 𝑐𝑙 − 𝑐1  if  𝜇1 − 𝜇2 > 0 . On the other hand, 𝜆2 > 𝑐𝑠  if −𝜇1 + 𝜇3 − 𝜇4 < 0;  and 

𝜆2 < 𝑐𝑠  if −𝜇1 + 𝜇3 − 𝜇4 > 0.         

Summing up, the necessary conditions derived from (20)-(24) are stated in Table A3. 

Table A3. The necessary conditions derived from (20)-(24). 

The conditions of  𝜆1 and 𝜆2 The corresponding multipliers 

𝜆1 > 𝑐0 + 𝑐1 − 𝑐𝑙 −𝜇2 + 𝜇5 − 𝜇6 < 0 

𝜆2 < 𝑐𝑙 − 𝑐1 𝜇1 − 𝜇2 < 0 

𝜆2 > 𝑐𝑠 −𝜇1 + 𝜇3 − 𝜇4 < 0 

𝜆1̇ = 0 if  𝑟0 = 0  

𝜆1̇ = 𝜇7 − 𝑐𝑝 = −𝜇6 + 𝜇8 if  𝑟0 > 0 

As shown in Table A3, the following two questions need to be addressed in order to derive 

the time intervals for each optimal decision: First, we need to specify  𝜆1   from the 

derivative  𝜆1̇ , which is related to 𝜇7 − 𝑐𝑝  and −𝜇6 + 𝜇8  if  𝑟0 > 0 . Then, we have to 

generate the time intervals from the conditions of the co-state variables, which are linked 

to the positivity of the following items: −𝜇2 + 𝜇5 − 𝜇6 , 𝜇1 − 𝜇2 , and −𝜇1 + 𝜇3 − 𝜇4 . 

Therefore, we next identify the multipliers 𝜇1,…, 𝜇8 for each  {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗}.  

(c)  The conditions for 𝝁𝟏,…, 𝝁𝟖 

Based on the complementary slackness conditions (28)-(31), the positivity of the 

multipliers 𝜇1,…, 𝜇8 can be initially identified. Accordingly, we can directly deduce the 

items 𝜇7 − 𝑐𝑝  and −𝜇6 + 𝜇8  for the cases with  𝑟0 > 0 , and the positivity of the 

aforementioned items  −𝜇2 + 𝜇5 − 𝜇6, 𝜇1 − 𝜇2, and −𝜇1 + 𝜇3 − 𝜇4. The results are given 

in Table A4.  

As stated in Table A4, the co-state variable 𝜆1  has been set to be a constant in 

Scenarios A(i) and A(iv) with 𝑟0 > 0. Nonetheless, the values of 𝜇7 − 𝑐𝑝 and −𝜇6 + 𝜇8 are 
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still undetermined in Scenarios A(ii) and A(v) with 𝑟0 > 0. As a result, the co-state variable 

𝜆1 is still undetermined. The following property can be observed in these two scenarios. 

  −𝜆1̇ =
𝜃

𝑃C−1
𝜇6 =

𝜃

𝑃C−1
𝜇6 =

𝜃

𝑃C−1
(𝑐𝑝 − 𝜇7) <

𝜃

𝑃C−1
𝑐𝑝.               (A10) 

that is, the co-state variable 𝜆1 drops at a speed lower than 
𝜃

𝑃C−1
𝑐𝑝.   

Table A4. The corresponding multipliers for {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} under 𝑑∗ = 1 − 𝑟2 > 𝑟1𝑠. 

𝑟0 Scenario 𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝜇6 𝜇7 𝜇8 𝜇7 − 𝑐𝑝 
−𝜇6

+ 𝜇8 

−𝜇2

+ 𝜇5

− 𝜇6 

𝜇1 −
𝜇2  

−𝜇1

+ 𝜇3

− 𝜇4 

0 
A(i)(ii) 

0 

 

+ 

 

+ 0 
+ + 

+ 

 

0 

 

No No U − + 

A(iv)(v) 0 + No No U − − 

+ 

A(i) 
+ 0 

+ 0 𝜇7 − 𝑐𝑝 0 U − + 

A(ii) 0 + 𝜇7 − 𝑐𝑝 −𝜇6 − − + 

A(iv) 
0 + 

+ 0 𝜇7 − 𝑐𝑝 0 U − − 

A(v) 0 + 𝜇7 − 𝑐𝑝 −𝜇6 − − − 

 “U” means that the positivity is undetermined; “No” means that there is no need to 

consider this item.  

Next, by further discussing (20)-(23) and determining the value of 𝜇6, we identify 𝜆1 

in Scenarios A(ii) and A(v) with 𝑟0 > 0. 

Given 𝜇1 = 𝜇5 = 0 in Scenarios A(ii) and A(v), (20) and (22) are generated as  

𝜕𝐿/𝜕𝑟2 = 𝑐𝑙 − (𝑐0 + 𝑐1) + 𝜆1 − 𝜇2 − 𝜇6 = 0, and 

𝜕𝐿/𝜕𝑑 = −𝑐1 + 𝑐𝑙 − 𝜆2 − 𝜇2 = 0. 

𝜇6 is then determined as 𝜇6 = 𝜆1 + 𝜆2 − 𝑐0. Therefore, (24) is derived as 

 𝜆1̇ =
−𝜃

𝑃C−1
(𝜆1 + 𝜆2 − 𝑐0),                                (A11) 

where 𝜆2 = 𝑐ℎ𝑡 + 𝜆2(0). Solving this linear differential equation, 𝜆1 is achieved as 

𝜆1 = 𝐶1𝑒
−

𝜃

(𝑃C−1)
t

+ 𝑐0 − 𝜆2(0) +  𝑐ℎ
𝑃C−1

𝜃
− 𝑐ℎ𝑡, denoted as  𝐹1.                          (A12) 

𝐶1  is a constant determined by the initial value 𝜆1(𝜏𝐹1)  at the entry time 𝜏𝐹1  of either 

strategy 𝐼𝐿 or strategy 𝑆𝐼𝐿.  

𝜆1(𝜏𝐹1) = 𝐶1𝑒
−

𝜃𝜏𝐹1
(𝑃C−1) + 𝑐0 − 𝜆2(0) +  𝑐ℎ

𝑃C−1

𝜃
− 𝑐ℎ𝜏𝐹1.  ↔  

𝐶1 = [𝜆1(𝜏𝐹1) − 𝑐0 + 𝜆2(0) −  𝑐ℎ
𝑃C−1

𝜃
+ 𝑐ℎ𝜏𝐹1]𝑒

𝜃𝜏𝐹1
(𝑃C−1).                      (A13) 
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    After specifying the co-state variable 𝜆1, given Table A4 together with Table A3, the 

conditions of the above optimal decisions, which define the corresponding time intervals, 

are shown in Table A5.  

Table A5.  The conditions of optimal decisions in Inventory Stage 1. 

𝑟0 Scenario 

The co-state variable 𝜆1 
The conditions of optimal 

decisions 

−𝜆1̇ 𝜆1 𝜆2 < 𝑐𝑙 − 𝑐1 
𝜆1 + 𝜆2 < 𝑐0 +

𝑐𝑝  

0 A(i)(ii) 0 constant 𝜆2 < 𝑐𝑠  

0 A(iv)(v) 0 constant 𝜆2 > 𝑐𝑠  

+ A(i) 0 constant 𝜆2 < 𝑐𝑠 𝜆1 + 𝜆2 < 𝑐0 

+ A(ii) <
𝜃

𝑃C−1
𝑐𝑝  𝐹1 𝜆2 < 𝑐𝑠 𝜆1 + 𝜆2 > 𝑐0 

+ A(iv) 0 constant 𝜆2 > 𝑐𝑠 𝜆1 + 𝜆2 < 𝑐0 

+ A(v) <
𝜃

𝑃C−1
𝑐𝑝  𝐹1 𝜆2 > 𝑐𝑠 𝜆1 + 𝜆2 > 𝑐0 

where 𝐹1 is given in (A12). 

 Synthesizing the above results in Tables A1 and A5, the optimal decisions and the 

corresponding conditions in Inventory Stage 1 are generated in Table 4.                                      □ 

Calculation of Table 5 

In the following chapter, Part B and Part C present the calculation that determines the 

optimal decisions under 𝑑∗ = 𝑟1𝑠 = 1 − 𝑟2 and 𝑑∗ = 𝑟1𝑠 < 1 − 𝑟2.  

Part B: The optimal decisions derived from  𝒅∗ = 𝒓𝟏𝒔 < 𝟏 − 𝒓𝟐 

Similar to the analysis in Part A, the optimal decisions are achieved in two steps: First, 

we determine the optimal values of the joint control {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗}. Then, we present the 

conditions for all developed optimal decisions, that is, the time intervals for each optimal 

strategy. 

(i) The optimal values of {𝒔∗, 𝒓𝟐
∗, 𝒑∗, 𝒅∗} under 𝒅∗ = 𝒓𝟏𝒔 < 𝟏 − 𝒓𝟐 

According to (35), 𝑠∗ and 𝑟2
∗  are determined as 

𝑠∗ = 1 if 𝑐1 + 𝑐𝑠 < 𝑐𝑙, and 𝑠∗ = 0 if 𝑐1 + 𝑐𝑠 > 𝑐𝑙.                         (B1) 

𝑟2
∗ = 𝑟0 + 𝑝  if  𝜆1 > 𝑐0 + 𝑐1 − 𝑐𝑙, and  𝑟2

∗ = 0  if   𝜆1 < 𝑐0 + 𝑐1 − 𝑐𝑙.      (B2) 

Substituting 𝑟2
∗ = 𝑟0 + 𝑝 into (35), the Hamiltonian function is derived as 
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𝐻 = [𝑐𝑙 − (𝑐0 + 𝑐1) + 𝜆1](𝑟0 + 𝑝) − 𝑐𝑝𝑝 + (−𝑐1 − 𝑐𝑠 + 𝑐𝑙 − 𝜆2)𝑟1𝑠 − 𝑐𝑙 + (𝑐0 + 𝑐1 +

𝑐ℎ𝐼0).                                                         (B3) 

𝑝∗ to maximize (B3) is determined as 

𝑝∗ = 1 − 𝑟0 if    𝜆1 > 𝑐0 + 𝑐1 − 𝑐𝑙 + 𝑐𝑝,  and  𝑝∗ = 0 if  𝜆1 < 𝑐0 + 𝑐1 − 𝑐𝑙 + 𝑐𝑝.  (B4) 

Summing up the above analysis and substituting 𝑠∗ into 𝑑∗, we see that under 𝑑∗ =

𝑟1𝑠 < 1 − 𝑟2, {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} is obtained in Table B1. 

Table B1. The optimal controls {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} under 𝑑∗ = 𝑟1𝑠 < 1 − 𝑟2. 

Scenario 𝑠∗ 𝑟2
∗ 𝑝∗ 𝑑∗ The condition 

B(i) 0 0 0 0 𝑐1 +
𝑐𝑠 >

𝑐𝑙  

 𝜆1 < (𝑐0 + 𝑐1) − 𝑐𝑙 

B(ii) 𝑟0 0 (𝑐0 + 𝑐1) − 𝑐𝑙 < 𝜆1 < (𝑐0 + 𝑐1) − 𝑐𝑙 + 𝑐𝑝  

B(iii) 1 1 − 𝑟0 𝜆1 > (𝑐0 + 𝑐1) − 𝑐𝑙 + 𝑐𝑝 

B(iv) 1 0 0 

𝑟1 

𝑐1 +
𝑐𝑠 <

𝑐𝑙   

 𝜆1 < (𝑐0 + 𝑐1) − 𝑐𝑙 

B(v) 𝑟0 0 (𝑐0 + 𝑐1) − 𝑐𝑙 < 𝜆1 < (𝑐0 + 𝑐1) − 𝑐𝑙 + 𝑐𝑝  

B(vi) 1 1 − 𝑟0 𝜆1 > (𝑐0 + 𝑐1) − 𝑐𝑙 + 𝑐𝑝 

In this study, we focus on the disruption events with 𝑐1 + 𝑐𝑠 < 𝑐𝑙, thus Scenarios B(i)- B(iii) 

can be excluded. Furthermore, due to 𝑟1𝑠 < 1 − 𝑟2, Scenario B(vi) cannot happen, and 

Scenario B(v) requires an extra condition  1 − 𝑟0 > 𝑟1. Therefore, taking the sub-scenarios 

of the customers’ reaction into consideration, Table B2 is derived.    

Table B2. The optimal controls {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} under 𝑑∗ = 𝑟1𝑠 < 1 − 𝑟2 and different 𝑟0. 

𝑟0 Scenario 𝑠∗ 𝑟2
∗ 𝑝∗ 𝑑∗ The notation of the strategy 

0 B(iv)(v) 1 0 0 𝑟1 𝑆𝐻
0  

0 < 𝑟0 < 1 − 𝑟1 
B(iv) 1 0 0 𝑟1 𝑆𝐻

0  

B(v) 1 𝑟0 0 𝑟1 𝑆𝐻
𝑟  

𝑟0 > 1 − 𝑟1 B(iv) 1 0 0 𝑟1 𝑆𝐻
0  

(ii)    The conditions of the optimal controls under 𝒅∗ = 𝒓𝟏𝒔 < 𝟏 − 𝒓𝟐 

According to Table A3, we have to identify the multipliers from the complimentary 

slackness conditions (28)-(31) in order to derive the time intervals for each optimal strategy. 

Similar to Table A4, the results for the optimal decisions under 𝑑∗ = 𝑟1𝑠 < 1 − 𝑟2 are 

shown in Table B3. 
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Table B3. The multipliers for {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} under 𝑑∗ = 𝑟1𝑠 < 1 − 𝑟2. 

𝑟0 Scenario 𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝜇6 𝜇7 𝜇8 
𝜇7 

−𝑐𝑝  
−𝜇6

+ 𝜇8 

−𝜇2

+ 𝜇5

− 𝜇6 

𝜇1 −
𝜇2  

−𝜇1

+ 𝜇3

− 𝜇4 

0 B(iv)(v) 

+ 0 

0 + + + 

+ 0 

No No U + − 

+ 

B(iv) 0 + + 0 
𝜇7 

−𝑐𝑝  
0 + + − 

B(v) 0 + 0 + 
𝜇7 

−𝑐𝑝  
−𝜇6 − + − 

As shown in Table B3, the co-state variable 𝜆1  needs to be further discussed for 

Scenario B(v). Given 𝜇2 = 𝜇5 = 0 in Scenario B(v), 𝜇6 is identified from (20) as 𝜇6 =

𝑐𝑙 − (𝑐0 + 𝑐1) + 𝜆1. Therefore, (24) defining 𝜆1 is derived as  

𝑑𝜆1

𝑑𝑡
+

𝜃

𝑃C−1
[𝑐𝑙 − (𝑐0 + 𝑐1) + 𝜆1] = 0.                           (B5) 

Similar to (A11), by solving the above linear differential equation, 𝜆1 is determined in the 

above Scenario B(v). That is, the  𝜆1  corresponding to the strategy 𝑆𝐻
𝑟  is determined as 

𝜆1 = 𝐶2 exp{−
𝜃𝑡

(𝑃C−1)
} + 𝑐0 + 𝑐1 − 𝑐𝑙, denoted as 𝐹2; 

  𝐶2 = [𝜆1(𝜏𝐹2) − 𝑐0 − 𝑐1 + 𝑐𝑙] exp{
𝜃𝜏𝐹2

(𝑃C−1)
}.                           (B6) 

𝜏𝐹2 is  the entry point  of the time interval under the use of strategy  𝑆𝐻
𝑟 .  

Given 𝜆1, and combining the inequalities presented in Table A3 with the results in 

Table B3, together with Table B2, the conditions under which the optimal controls under 

𝑑∗ = 𝑟1𝑠 < 1 − 𝑟2 are the optimal decision in Inventory Stage 2 are shown in Table B4. 

TableB4.  The conditions for optimal decisions in Inventory Stage 2 under 𝑑∗ = 𝑟1𝑠 <

1 − 𝑟2. 

𝑟0 Scenario 𝜆2 > 𝑐𝑙 − 𝑐1 −𝜆1̇ 𝜆1 < 𝑀1 + 𝑐𝑝 𝜆1 

0 B(iv)(v) 
𝜆2 > 𝑐𝑠 

 

0  constant 

+ 
B(iv) 0 𝜆1 < 𝑀1 constant 

B(v) <
𝜃

𝑃C−1
𝑐𝑝  𝜆1 > 𝑀1 𝐹2 

Part C: The optimal decisions derived from  𝒅∗ = 𝒓𝟏𝒔 = 𝟏 − 𝒓𝟐 

Similarly, the optimal decisions are determined with two steps: the optimal values and 

the corresponding conditions of {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗}. 

(i) The optimal values of {𝒔∗, 𝒓𝟐
∗, 𝒑∗, 𝒅∗} under 𝒅∗ = 𝒓𝟏𝒔 = 𝟏 − 𝒓𝟐 
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In view of (8)-(10), the decision variables 𝑠 and 𝑟2 are limited to  

0 ≤ 𝑟1𝑠 ≤ 𝑟1, 1 − 𝑟0 − 𝑝 ≤ 1 − 𝑟2 ≤ 1, where 0 ≤ 𝑝 ≤ 1 − 𝑟0. 

Nonetheless, under 1 − 𝑟2 = 𝑟1𝑠, the ranges of these two variables are further identified as 

(see Figure C1) 

1 − 𝑟1 ≤ 𝑟2 ≤ 𝑟0 + 𝑝, and (1 − 𝑟0 − 𝑝)/𝑟1 ≤ 𝑠 ≤ 1.                              (C1) 

 

Figure C1. The constraint 1 − 𝑟2 = 𝑟1𝑠. 

Note that, 

 𝑠 = (1 − 𝑟0 − 𝑝)/𝑟1 ≤ 1 when 𝑟2 = 𝑟0 + 𝑝, and 𝑠 = 1 when 𝑟2 = 1 − 𝑟1.      (C2) 

(C1) also indicates 

𝑝 ≥ 1 − 𝑟1 − 𝑟0.                                            (C3)  

According to (36), 𝜕𝐻/𝜕𝑟2 = 𝜆1 + 𝑐𝑠 − 𝑐0. Thus, together with (C1), the optimal  𝑟2
∗ is 

achieved as 

𝑟2
∗ = 𝑟0 + 𝑝  if  𝜆1 > 𝑐0 − 𝑐𝑠, and  𝑟2

∗ = 1 − 𝑟1  if   𝜆1 < 𝑐0 − 𝑐𝑠.            (C4) 

Next, we calculate the corresponding compensation level for achieving  𝑟2
∗. 

(a) If 𝒓𝟐
∗ = 𝒓𝟎 + 𝒑:   

    Substitute 𝑟2
∗ = 𝑟0 + 𝑝 into (36),  

𝐻 = (𝜆1 + 𝑐𝑠 − 𝑐0)(𝑟0 + 𝑝 ) − 𝑐𝑝𝑝 − 𝑐𝑝𝑝 + −𝑐𝑠 − 𝑐ℎ𝐼 + 𝑐0 + 𝑐ℎ𝐼0.      (C5) 

Combining (C3) and 0 ≤ 𝑝 ≤ 1 − 𝑟0, (C5) is maximized at 

𝑝∗ = 1 − 𝑟0 if  𝜆1 > 𝑐0 − 𝑐𝑠 + 𝑐𝑝, 

and  𝑝∗ = max{0, 1 − 𝑟1 − 𝑟0}  if  𝜆1 < 𝑐0 − 𝑐𝑠 + 𝑐𝑝.                        (C6) 

(b) If  𝒓𝟐
∗ = 𝟏 − 𝒓𝟏:   

1 − 𝑟2 

𝑟1𝑠 0 𝑟1 1 

1 − 𝑟2 = 𝑟1𝑠 
1 

1 − 𝑟0 − 𝑝  
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    In view of the customers’ reaction, three scenarios are involved if we wish to achieve 

𝑟2
∗ = 1 − 𝑟1 > 0.  

(b-1) When 𝑟0 > 1 − 𝑟1 > 0 : 𝑟0 customers are willing to backorder without compensation, 

thus, no compensation is needed, i.e.,  𝑝∗ = 0. 

(b-2) When 0 < 𝑟0 < 1 − 𝑟1:  The compensation level is determined as  𝑝∗ = 𝑟2
∗ − 𝑟0 =

1 − 𝑟1 − 𝑟0 > 0.     

(b-3) When 𝑟0 = 0:  The compensation level is determined as  𝑝∗ = 𝑟2
∗ − 𝑟0 = 1 − 𝑟1 −

𝑟0 = 1 − 𝑟1.    

Table C1. The optimal controls {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} under 𝑑∗ = 1 − 𝑟2 = 𝑟1𝑠 . 

𝑠∗ 𝑟2
∗ 𝑝∗ 𝑑∗ The condition 

1 1 − 𝑟1 

0 

1 − 𝑟2 

 𝜆1 < 𝑐0 −
𝑐𝑠  

𝑟0 > 1 − 𝑟1 

1 − 𝑟1 − 𝑟0 0 < 𝑟0 < 1 − 𝑟1 

1 − 𝑟1 𝑟0 = 0 

(1 − 𝑟0

− 𝑝)/𝑟1 
𝑟0 + 𝑝 

max{0, 1 − 𝑟1 − 𝑟0}  𝑐0 − 𝑐𝑠 < 𝜆1 < 𝑐0 − 𝑐𝑠 + 𝑐𝑝 

1 − 𝑟0 𝜆1 > 𝑐0 − 𝑐𝑠 + 𝑐𝑝 

Note that 𝑟0 can fall into three sub-scenarios: 𝑟0 = 0, 0 < 𝑟0 < 1 − 𝑟1, and 𝑟0 > 1 −

𝑟1. Accordingly, the values of the above optimal controls fall into multiple scenarios.  By 

substituting 𝑟2
∗ into 𝑑∗, and 𝑝∗ into 𝑠∗, we present all the scenarios of the optimal controls 

in Table C2. 

Table C2. The optimal controls {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} under 𝑑∗ = 1 − 𝑟2 = 𝑟1𝑠 and different 𝑟0. 

𝑟0 Scenario 𝑠∗ 𝑟2
∗ 𝑝∗ 𝑑∗ 

The notation 

of the strategy 

0 
C(i) 1 1 − 𝑟1  1 − 𝑟1 𝑟1 𝑆𝑃𝐻 

C(ii) 0 1 1 0 𝑃𝐻 

0 < 𝑟0 <
1 − 𝑟1  

C(iii) 1 1 − 𝑟1  1 − 𝑟1 − 𝑟0  𝑟1 𝑆𝑃𝐿 

C(iv) 0 1 1 − 𝑟0 0 𝑃𝐿 

𝑟0 > 1 − 𝑟1 

C(v) 1 1 − 𝑟1  0 𝑟1 𝑆𝐿
0 

C(vi) (1 − 𝑟0)/
𝑟1     

𝑟0 0 
1 −
𝑟0  

𝑆𝐿  

C(iv) 0 1 1 − 𝑟0 0 𝑃𝐿 

(ii)    The conditions of the optimal controls under 𝒅∗ = 𝒓𝟏𝒔 = 𝟏 − 𝒓𝟐 

As analyzed in Part A-B, we identify the multipliers 𝜇1,…, 𝜇8 and the corresponding 

items from (28)-(31), as shown in Table C3.  
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Table C3. The multipliers for {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} under 𝑑∗ = 1 − 𝑟2 = 𝑟1𝑠. 

Scenario 𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝜇6 𝜇7 𝜇8 
𝜇7 

−𝑐𝑝 
−𝜇6 

+𝜇8 

−𝜇2 

+𝜇5 

−𝜇6 

𝜇1 

−𝜇2 

−𝜇1 

+𝜇3 

−𝜇4 

C(i) 

+ + 

0 + 

0 

+ 0 0 No No − U − 

C(ii) + 0 + 0 + No No − U U 

C(iii) 0 + + 0 0 −𝑐𝑝 −𝜇6 − U − 

C(iv) 
+ 0 + 0 + −𝑐𝑝 

−𝜇6 

+𝜇8 
− U U 

C(v) 
0 + 0 + 0 

𝜇7 

−𝑐𝑝 
0 − U − 

C(vi) 
0 0 + + 0 

𝜇7 

−𝑐𝑝 
−𝜇6 − U − 

    

According to the values of  𝜇7 − 𝑐𝑝 and  −𝜇6 + 𝜇8, we see that the co-state variable 

𝜆1 is undetermined in Scenario C(vi). We next identify 𝜆1 by further discussing (20)-(24). 

As stated in Table C3,  𝜇3 = 𝜇4 = 𝜇5 = 0.  Substituting this into (20), (22) and (23), we 

have 

𝜕𝐿/𝜕𝑟2 = 𝑐𝑙 − (𝑐0 + 𝑐1) + 𝜆1 − 𝜇2 − 𝜇6 = 0. 

𝜕𝐿/𝜕𝑑 = −𝑐1 + 𝑐𝑙 − 𝜆2 + 𝜇1 − 𝜇2 = 0. 

𝜕𝐿/𝜕𝑠 = −𝑐𝑠𝑟1 + 𝜆2𝑟1 − 𝜇1 = 0. 

Solving the above three equations, we have  𝜇6 = 𝜆1 − 𝑐0 + 𝑐𝑠𝑟1 + 𝜆2(1 − 𝑟1).  Therefore, 

together with (24), 𝜆1 is defined by the equation  

𝑑𝜆1

𝑑𝑡
+

𝜃

𝑃C−1
[𝜆1 − 𝑐0 + 𝑐𝑠𝑟1 + 𝜆2(1 − 𝑟1)] = 0.                               (C7) 

Similar to (A11), substituting 𝜆2 = 𝑐ℎ𝑡 + 𝜆2(0) into the above equation, we have 

𝜆1 = 𝐶3 exp{−
𝜃𝑡

𝑃C−1
} + 𝑐0 − 𝜆2(0)(1 − 𝑟1) − 𝑐𝑠𝑟1 + 𝑐ℎ(1 − 𝑟1)(

𝑃C−1

𝜃
− 𝑡), denoted as 𝐹3; 

𝐶3 = {𝜆1(𝜏𝐹3) − [𝑐0 − 𝜆2(0)(1 − 𝑟1) − 𝑐𝑠𝑟1 + 𝑐ℎ(1 − 𝑟1) (
𝑃C−1

𝜃
− 𝜏𝐹3)]} exp{

𝜃 𝜏𝐹3

𝑃C−1
} .(C8) 

𝜏𝐹3 is the entry point of Scenario C(vi), that is, the entry point of the time interval that 

uses strategy 𝑆𝐿  (see Table C2). 

Based on the necessary conditions from Table C3 and Table A4, together with Table 

C1, the conditions for the optimal controls under 𝑑∗ = 1 − 𝑟2 = 𝑟1𝑠 that need to be met to 

make the optimal decision in Inventory Stage 2 are provided in Table C4.  



12 
 

Table C4.  The conditions for optimal decisions in Inventory Stage 2 under 𝑑∗ = 1 −

𝑟2 = 𝑟1𝑠. 

Scenario 

The co-state 

variable 𝜆1 
The conditions 

−𝜆1̇ 𝜆1 𝜆2 𝜆1 > 𝑀1 

C(i) 0 constant > 𝑐𝑠 𝜆1 > 𝑐𝑝 + 𝑀1  𝜆1 < 𝑐𝑝 + 𝑀2 

C(ii) 0 constant  𝜆1 > 𝑐𝑝 + 𝑀1  𝜆1 > 𝑐𝑝 + 𝑀2 

C(iii) 𝑀0 𝐹4 > 𝑐𝑠 𝜆1 > 𝑐𝑝 + 𝑀1  𝜆1 < 𝑐𝑝 + 𝑀2 

C(iv) 𝑀0 𝐹4  𝜆1 > 𝑐𝑝 + 𝑀1  𝜆1 > 𝑐𝑝 + 𝑀2 

C(v) 0 constant > 𝑐𝑠  𝜆1 < 𝑀2 

C(vi) < 𝑀0 𝐹3 > 𝑐𝑠 𝜆1 < 𝑐𝑝 + 𝑀2  𝜆1 > 𝑀2  

Where  𝑀0 =
𝜃

𝑃C−1
𝑐𝑝,  𝑀1 = 𝑐0 + 𝑐1 − 𝑐𝑙,  𝑀2 = 𝑐0 − 𝑐𝑠, and  𝐹3 is given in (C8).  

𝐹4 = 𝜆1(𝜏𝐹4) −
𝜃 (𝑡−𝜏𝐹4)

𝑃C−1
𝑐𝑝.                                              (C9) 

𝜏𝐹4 is  the entry point of Scenario C(iii) or C(iv), that is, the entry point of the time interval 

that uses strategy  𝑆𝑃𝐿 or 𝑃𝐿 (see Table C2). 

Synthesizing the above results derived from  𝑑∗ = 𝑟1𝑠 < 1 − 𝑟2 (Table B2, B4) and 

𝑑∗ = 𝑟1𝑠 = 1 − 𝑟2 (Table C2, C4), we get Table C5. It presents the optimal decisions in 

Inventory Stage 2. 

Table C5. The optimal strategy under different 𝑟0 in Inventory Stage 2 

𝑟0 Scenario 

The 

optimal 

strategy 

The conditions for each strategy 

−𝜆1̇ 𝜆1 𝜆1 𝜆2 

0 

B(iv) 

B(v) 
𝑆𝐻

0  0 constant 𝜆1 < 𝑀1 + 𝑐𝑝 > 𝑐𝑙 − 𝑐1 

C(i) 𝑆𝑃𝐻 0 constant 
𝑐𝑝 + 𝑀1 < 𝜆1 <

𝑐𝑝 + 𝑀2  
> 𝑐𝑠 

C(ii) 𝑃𝐻 0 constant 𝜆1 > 𝑐𝑝 + 𝑀2  

0
< 𝑟0

< 1
− 𝑟1 

B(iv) 𝑆𝐻
0  0 constant 𝜆1 < 𝑀1 > 𝑐𝑙 − 𝑐1 

B(v) 𝑆𝐻
𝑟  < 𝑀0 𝐹2 𝑀1 < 𝜆1 < 𝑐𝑝 + 𝑀1 > 𝑐𝑙 − 𝑐1 

C(iii) 𝑆𝑃𝐿 𝑀0 𝐹4 
𝑐𝑝 + 𝑀1 < 𝜆1 <

𝑐𝑝 + 𝑀2  
> 𝑐𝑠 

C(iv) 𝑃𝐿 𝑀0 𝐹4 𝜆1 > 𝑐𝑝 + 𝑀2  

𝑟0

> 1
− 𝑟1 

B(iv) 𝑆𝐻
0  0 constant 𝜆1 < 𝑀1 > 𝑐𝑙 − 𝑐1 

C(v) 𝑆𝐿
0 0 constant 𝑀1 < 𝜆1 < 𝑀2 > 𝑐𝑠 

C(vi) 𝑆𝐿  < 𝑀0 𝐹3 𝑀2 < 𝜆1 < 𝑐𝑝 + 𝑀2  > 𝑐𝑠 

C(iv) 𝑃𝐿 𝑀0 𝐹4 𝜆1 > 𝑐𝑝 + 𝑀2  
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As indicated in Table C5,  the co-state variable 𝜆1 is a constant or a  function that drops 

over time, with a terminal value 𝜆1 (𝑇 − 𝑡0) = 0 (see (23)). Thus, 𝜆1 ≥ 0 before the time 

𝑇 . As a result,  𝜆1 < 𝑀2 < 0  or  𝜆1 < 𝑀1  never appear. Accordingly, the strategies 𝑆𝐻
0  

and 𝑆𝐿
0 can be excluded from the case of  𝑟0 > 1 − 𝑟1, and 𝑆𝐻

0  can be excluded from 0 <

𝑟0 < 1 − 𝑟1. We get Table 5.                                                                                              □   

Part D:  

Derivation of Figures 2-3  

(i) For Figure 2 

When the inventory remains positive in Inventory Stage 1, transitions between 

strategies can only occur under two situations: if the conditions defined by co-state 

variables 𝜆1 and 𝜆2 are not met or if the demand state defined by customers’ behavior 

𝑟0 changes.  

(a) The dynamics of 𝜆1 and 𝜆2 in Inventory Stage 1 

As stated in Table 4, 𝜆1 = 𝐹1  under strategies 𝐼𝐿  and 𝑆𝐼𝐿  and 𝜆1 = 𝐶  under 𝐼𝐻  and 

𝑆𝐼𝐻. According to the expression of 𝐹1 (See (A11-A13) ), we have (D1-D2) for 𝐼𝐿 and 𝑆𝐼𝐿.  

𝜆1 + 𝜆2 = 𝐶1𝑒
−

𝜃𝜏𝐹1
(𝑃C−1) + 𝑐0 +  𝑐ℎ

𝑃C−1

𝜃
.                                      (D1) 

𝜆1̇ + 𝜆2̇ = 𝑐ℎ −
𝜃

𝑃C−1
(𝜆1 + 𝜆2 − 𝑐0).                                       (D2) 

That is, 𝜆1 + 𝜆2 increases over time when 𝜆1 + 𝜆2 < 𝑐0 + 𝑐ℎ(𝑃C − 1)/𝜃. Therefore, 

together with 𝜆2 = 𝜆2(0) + 𝑐ℎ𝑡, the property (D3) is determined. 

𝜆2 increases over time; 

under strategies 𝐼𝐻 and 𝑆𝐼𝐻: 𝜆1 + 𝜆2 = 𝐶 + 𝜆2 increases over time; 

under strategies 𝐼𝐿 and 𝑆𝐼𝐿: 𝜆1 + 𝜆2 increases over time at the first phase where 𝜆1 + 𝜆2 ∈ 

[𝑐0, 𝑐0 + 𝑐ℎ(𝑃C − 1)/𝜃].                                                             (D3) 

Thus, we have the following findings: First, the transition from 𝜆1 + 𝜆2 > 𝑐0 to 𝜆1 + 𝜆2 <

𝑐0 never happens, and the transition from 𝜆1 + 𝜆2 < 𝑐0 to 𝜆1 + 𝜆2 > 𝑐0 can be activated 

(transition ③ in Figure 2). Second, the transition from 𝜆2 < 𝑐𝑠 to 𝜆2 > 𝑐𝑠 can be activated 

(transition ④ in Figure 2).  

(b) The dynamics of 𝑟0 in Inventory Stage 1 
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Figure D1. The dynamics of  𝑡𝑤𝑎𝑖𝑡 under different strategies. 

According to Lemma 1, the required waiting time of customers who arrive at time 𝑡 

increases over time if the backorder rate exceeds 𝑃𝐶 − 1. As stated in Table 3, 𝑟2
∗ could be 

achieved as 𝑟0
∗, 1, 0, and 1 − 𝑟1 under the implementations of our proposed elven types of 

strategies. Therefore, in order to present the dynamics of customers’ behavior, we consider 
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two cases: Case 1 where 𝑃𝐶 − 1 > 1 − 𝑟1  and Case 2 where 𝑃𝐶 − 1 < 1 − 𝑟1 , and 

accordingly divide Demand State 2 where 𝑟0 > 0 into three sub-states, as shown in Figure 

D1. 

In Inventory Stage 1,  𝑟2
∗  = 𝑟0

∗ under strategies 𝐼𝐿  and 𝑆𝐼𝐿  and 𝑟2
∗  = 0 under 𝐼𝐻  and 

𝑆𝐼𝐻. The dynamics of customers’ waiting time are depicted in Figure D1, which defines 

when and how the demand state changes over time. The transition from Demand State 1 to 

Demand State 2 can be activated in Inventory Stage 1 (transition ① in Figure 2). 

(ii) For Figure 3 

(a) The dynamics of 𝜆1 in Inventory Stage 2 

As stated in Table 5, after the inventory is entirely depleted, the conditions of optimal 

strategies are defined by 𝜆1 in Inventory Stage 2, where and 𝜆1 = 𝐶, 𝐹2, 𝐹3, 𝐹4. According 

to the expressions of 𝐹2, 𝐹3, 𝐹4 (see Tables B4 and C4), we see that 𝜆1 decreases over time 

or remains constant in the time intervals of Inventory Stage 2. Thus, the transitions 

activated by 𝜆1 can only occur at two types of time points:  from 𝜆1 < 𝑐𝑝 + 𝑀2 to 𝜆1 >

𝑐𝑝 + 𝑀2  (transition ⑤ in Figure 3) or from 𝑐𝑝 + 𝑀1 < 𝜆1 < 𝑐𝑝 + 𝑀2  to 𝜆1 < 𝑐𝑝 + 𝑀1 

(transition ⑥ in Figure 3);  

(b) The dynamics of 𝑟0 in Inventory Stage 2 

Similarly, 𝑟2
∗ = 𝑟0

∗ , 1 , 0 , and 1 − 𝑟1  in Inventory Stage 2, and the dynamics of 

customers’ waiting time are also presented in Figure D1 to define the transition trend of 

the backlogged demand state (transitions ① and ② in Figure 3).   

Summing up, we get Figures 2-3.                                                                                 □   

Part E:  

Calculation of Table 6 

Before examining possible transitions at time 𝑡𝑖0 , we present the values of the 

Hamilton function for the proposed eleven types of strategies. Here, for the sake of 

convenience, we denoted the value of the Hamilton function 

𝐻(𝑟2
∗, 𝑠∗, 𝑝∗, 𝑑∗, 𝑏∗, 𝐼∗, 𝜆1 , 𝜆2 , 𝑡𝑖0 )  for the strategy 𝐼𝐻  as 𝐻1( 𝐼𝐻) , and similarly for the 

other strategies. 
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Recall from the calculation of Tables 4-5 that the strategies 𝐼𝐻,  𝐼𝐿 , 𝑆𝐼𝐻  and 𝑆𝐼𝐿 are 

derived from the Hamilton function (33), 𝑆𝐻
0  and 𝑆𝐻

𝑟  are from (35), and  𝑆𝑃𝐻, 𝑆𝑃𝐿, 𝑃𝐻, and 

𝑃𝐿 are from (36). Therefore, by substituting  {𝑠∗, 𝑟2
∗, 𝑝∗, 𝑑∗} of each strategy (see Table 3) 

into the above three Hamilton functions, we get (E1)-(E11).  

𝐻1(𝐼𝐻) =  −𝜆2 + 𝑐0 + 𝑐ℎ𝐼0.                                                     (E1) 

𝐻1(𝐼𝐿) = (𝜆1 + 𝜆2 − 𝑐0) − 𝜆2 + 𝑐0 + 𝑐ℎ𝐼0.                              (E2) 

𝐻2( 𝑆𝐻
0) = (𝑐𝑙 − 𝑐1 − 𝑐𝑠)𝑟1 − 𝑐𝑙 + 𝑐0 + 𝑐1 + 𝑐ℎ𝐼0.                             (E3) 

𝐻2( 𝑆𝐻
𝑟 ) = (𝑐𝑙 + 𝜆1 − 𝑐0 − 𝑐1)𝑟0 + (𝑐𝑙 − 𝑐1 − 𝑐𝑠)𝑟1 − 𝑐𝑙 + 𝑐0 + 𝑐1 + 𝑐ℎ𝐼0.   (E4) 

𝐻3(𝑃𝐻) = 𝜆1 − 𝑐𝑝 + 𝑐ℎ𝐼0.                                              (E5) 

𝐻3(𝑃𝐿) = 𝜆1 − 𝑐𝑝(1 − 𝑟0) + 𝑐ℎ𝐼0.                                      (E6) 

𝐻3(𝑆𝑃𝐻) = (𝜆1 + 𝑐𝑠 − 𝑐0 − 𝑐𝑝)(1 − 𝑟1) − 𝑐𝑠 + 𝑐0 + 𝑐ℎ𝐼0.              (E7) 

𝐻3(𝑆𝑃𝐿) = (𝜆1 + 𝑐𝑠 − 𝑐0 − 𝑐𝑝)(1 − 𝑟1) + 𝑐𝑝 𝑟0 − 𝑐𝑠 + 𝑐0 + 𝑐ℎ𝐼0.           (E8) 

𝐻3(𝑆𝐿) = (𝜆1 + 𝑐𝑠 − 𝑐0) 𝑟0 − 𝑐𝑠 + 𝑐0 + 𝑐ℎ𝐼0 .                            (E9) 

𝐻1( 𝑆𝐼𝐻) = (𝜆2 − 𝑐𝑠) 𝑟1 − 𝜆2 + 𝑐0 + 𝑐ℎ𝐼0.                            (E10) 

𝐻1(𝑆𝐼𝐿) = (𝜆1 + 𝜆2 − 𝑐0) 𝑟0 + (𝜆2 − 𝑐𝑠) 𝑟1 − 𝜆2 + 𝑐0 + 𝑐ℎ𝐼0.            (E11) 

By examining the jump condition (37) for the possible transitions, we exclude the cases 

that cannot be met, and  present the conditions that cannot be met directly. Note that, due 

to the continuity of the backlogged demand 𝑏, we have 𝑟0( 𝑡𝑖0
−) = 𝑟0( 𝑡𝑖0

+) = 𝑟0( 𝑡𝑖0) 

and 𝜆1( 𝑡𝑖0
+) = 𝜆2( 𝑡𝑖0

−). The results are summarized in Table E1. 

(i) 𝑰𝑯 − 𝑺𝑯
𝟎 : 𝜆2

− = 𝑐𝑠𝑟1 + (𝑐𝑙 − 𝑐1)(1 − 𝑟1). Thus, the transition is excluded based on 

𝜆2
− ≤ 𝑐𝑠. 

(ii) 𝑰𝑯 − 𝑺𝑯
𝒓：𝜆2

− = −(𝜆1
+ − 𝑐0)𝑟0( 𝑡𝑖0

−) + 𝑐𝑠𝑟1 + (𝑐
𝑙

− 𝑐1)(1 − 𝑟1 − 𝑟0( 𝑡𝑖0
−)) .  The 

transition happens if and only if 𝜆2
− = 𝑐𝑠 , 𝜆1

+ = 𝑐0 − 𝑐𝑠 , and 𝑟0( 𝑡𝑖0
+) = 1 − 𝑟1 . 

Thus, this transition is excluded. 
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(iii) 𝑰𝑯 − 𝑺𝑷𝑯: 𝜆2
− − 𝑐𝑠 = [𝑐𝑝 − (𝜆1

+ + 𝑐𝑠 − 𝑐0)](1 − 𝑟1) is required. However, due to 

𝜆1
+ ≤ 𝑐0 − 𝑐𝑠 + 𝑐𝑝  under 𝑆𝑃𝐻  and 𝜆2

− ≤ 𝑐𝑠 , the equation happens if and only if 

𝜆2
− = 𝑐𝑠 and  𝜆1

+ = −𝑐𝑠 + 𝑐0 + 𝑐𝑝. 

(iv) 𝑰𝑯 − 𝑺𝑷𝑳 : 𝜆2
− − 𝑐𝑠 + 𝑐𝑝𝑟0( 𝑡𝑖0

+) − (𝑐𝑝 + 𝑐0 − 𝑐𝑠 − 𝜆1
+)(1 − 𝑟1) = 0 . Due to 

𝑟0( 𝑡𝑖0
+) ≤  1 − 𝑟1 under 𝑆𝑃𝐻 and 𝜆2

− ≤ 𝑐0 − 𝜆1
−

under 𝐼𝐻, we have 0 = 𝜆2
− − 𝑐𝑠 +

𝑐𝑝𝑟0( 𝑡𝑖0
+) − (𝑐𝑝 + 𝑐0 − 𝑐𝑠 − 𝜆1

+)(1 − 𝑟1) ≤ 𝜆2
− − 𝑐𝑠 − (𝑐0 − 𝑐𝑠 − 𝜆1

+)(1 − 𝑟1) , 

that is 𝜆2
− − 𝑐𝑠 ≥ (𝑐0 − 𝑐𝑠 − 𝜆1

+)(1 − 𝑟1) . On the other hand, 𝜆2
− ≤ 𝑐0 − 𝜆1

− =

𝑐0 − 𝜆1
+ under 𝐼𝐻 . Thus, we have 𝜆2

− − 𝑐𝑠 ≥ (𝜆2
− − 𝑐𝑠)(1 − 𝑟1) . The inequality 

happens if and only if 𝜆2
− = 𝑐𝑠. Accordingly, 𝜆1

+ = 𝑐0 − 𝑐𝑠 and 𝑟0( 𝑡𝑖0
+) = 1 − 𝑟1 

are determined based on the jump condition. The transition is excluded based on 𝜆1
+ ≥

0. 

(v) 𝑰𝑯 − 𝑷𝑳 : 𝜆2
− = 𝑐𝑝 [1 − 𝑟0(𝑡𝑖0

+)] + 𝑐0 − 𝜆1
+

. Thus, 𝜆1
− + 𝜆2

−
 = 𝜆1

+ + 𝜆2
− > 𝑐0 . 

The transition is excluded. 

(vi) 𝑰𝑯 − 𝑺𝑳：𝜆2
− + (𝜆1

+ + 𝑐𝑠 − 𝑐0)𝑟0( 𝑡𝑖0
+) − 𝑐𝑠 = 0. Based on 𝜆1

− − 𝑐0 ≤ −𝜆2
−

, we 

have 0 ≤ (𝜆2
− − 𝑐𝑠)(1 − 𝑟0( 𝑡𝑖0

+)) . Similarly,  𝜆1
+ = 𝑐0 − 𝑐𝑠  and 𝜆2

− = 𝑐𝑠  is 

achieved. The transition is excluded based on 𝜆1
+ ≥ 0. 

(vii) 𝑰𝑳 − 𝑺𝑷𝑳:  𝜆2
−(1 − 𝑟0( 𝑡𝑖0

+)) + (𝜆1
+ − 𝑐0 − 𝑐𝑝)(1 − 𝑟1 − 𝑟0( 𝑡𝑖0

+)) − 𝑐𝑠𝑟1 = 0 . 

The transition happens if and only if 𝜆2
− = 𝑐𝑠 and 𝑟0( 𝑡𝑖0

+) = 1 − 𝑟1. 

(viii)  𝑰𝑳 − 𝑺𝑳: 𝜆2
− = (𝑐𝑠 − 𝜆2

−) 𝑟0( 𝑡𝑖0
+) + 𝑐𝑠, that is, 𝜆2( 𝑡𝑖0

−) = 𝑐𝑠. 

(ix) 𝑰𝑳 − 𝑺𝑯
𝒓 :𝜆2

−[1 − 𝑟0( 𝑡𝑖0
−)] = 𝑐𝑠𝑟1 + (𝑐𝑙 − 𝑐1)(1 − 𝑟1 −  𝑟0( 𝑡𝑖0

−)) . The inequality 

happens if and only if 𝜆2
− = 𝑐𝑠 and  𝑟0( 𝑡𝑖0

−) = 1 − 𝑟1. 

(x) 𝑺𝑰𝑯 − 𝑷𝑯:  𝜆2
−(1 − 𝑟1) − (𝑐𝑝 + 𝑐0 − 𝑐𝑠𝑟1) + 𝜆1

+ = 0. Due to 𝜆2
− > 𝑐𝑠  and 𝜆1

+ ≥

𝑐𝑝 + 𝑐0 − 𝑐𝑠 , we see that 0 ≥ 𝑐𝑠(1 − 𝑟1) − (𝑐𝑝 + 𝑐0 − 𝑐𝑠𝑟1) + 𝑐𝑝 + 𝑐0 − 𝑐𝑠 . The 

transition is excluded. 

(xi) 𝑺𝑰𝑯 − 𝑷𝑳 : The transition requires 𝑐0 − 𝑟1𝑐𝑠 + 𝑐𝑝(1 − 𝑟0) = 𝜆1
+ + 𝜆2

−(1 − 𝑟1) ≥

𝑐𝑝 + 𝑐0 − 𝑐𝑠 + (1 − 𝑟1)𝑐𝑠 . The inequality cannot happen. 

(xii) 𝑺𝑰𝑯 − 𝑺𝑷𝑳:  (𝜆1
− + 𝜆2

− − 𝑐0 − 𝑐𝑝)(1 − 𝑟1) + 𝑐𝑝 𝑟0( 𝑡𝑖0
+) = 0 . The transition is 

excluded because of 𝜆1
− + 𝜆2

− − 𝑐0 − 𝑐𝑝 < 0. 
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(xiii) 𝑺𝑰𝑯 − 𝑺𝑳: (𝜆1
− + 𝑐𝑠 − 𝑐0) 𝑟0( 𝑡𝑖0

+) + (𝜆2
− − 𝑐𝑠)(1 −  𝑟1) = 0. Due to 𝜆1

− − 𝑐0 ≤

−𝜆2
−

, the following inequality is deduced: (𝜆2
− − 𝑐𝑠)(1 − 𝑟1 − 𝑟0( 𝑡𝑖0

+)) ≥ 0. Note 

that (1 −  𝑟1 − 𝑟0( 𝑡𝑖0
+)) ≤ 0 under 𝑆𝐿 and  𝜆2

− − 𝑐𝑠 ≥ 0 under 𝑆𝐼𝐻. The transition is 

excluded. 

(xiv)  𝑺𝑰𝑯 − 𝑺𝑯
𝒓 :  (𝑐𝑙 + 𝜆1

+ − 𝑐0 − 𝑐1)𝑟0( 𝑡𝑖0
−) + (𝜆2

− − 𝑐𝑙 + 𝑐1)(1 − 𝑟1) = 0 . The 

transition happens if and only if 𝜆1
+ + 𝜆2

− = 𝑐0.  Accordingly, (𝜆2
− − 𝑐𝑙 + 𝑐1)(1 −

 𝑟1 − 𝑟0( 𝑡𝑖0
−)) = 0  is determined. On the other hand, 𝜆1

+ = 𝑐0 − 𝑐𝑙 + 𝑐1 < 0  is 

achieved if 𝜆2
− = 𝑐𝑙 − 𝑐1.  Therefore, 1 −  𝑟1 − 𝑟0( 𝑡𝑖0

−) = 0 has to be met. 

(xv) 𝑺𝑰𝑳 − 𝑷𝑳:  𝜆2
−[ 1 − 𝑟0( 𝑡𝑖0

−) − 𝑟1] = −𝑟1𝑐𝑠 + (𝑐𝑝 + 𝑐0 − 𝜆1
+)[ 1 − 𝑟0( 𝑡𝑖0

−)] . The 

transition is excluded. 

Table E1.  The jump conditions for possible transitions at time  𝑡𝑖0. 

Transitions The jump condition for each transition  

𝐼𝐻 − 𝑆𝐻
0   Excluded 

𝐼𝐻 − 𝑆𝑃𝐻 𝜆2
− = 𝑐𝑠 and  𝜆1

+ = −𝑐𝑠 + 𝑐0 + 𝑐𝑝  

𝐼𝐻 − 𝑃𝐻 𝜆2
− = 𝑐𝑝 + 𝑐0 − 𝜆1

+
  

𝐼𝐻 − 𝑆𝐻
𝑟   Excluded 

𝐼𝐻 − 𝑃𝐿  Excluded 

𝐼𝐻 − 𝑆𝑃𝐿  Excluded 

𝐼𝐻 − 𝑆𝐿  Excluded 

𝐼𝐿 − 𝑃𝐿 𝜆2
− = 𝑐𝑝 + 𝑐0 − 𝜆1

+
  

𝐼𝐿 − 𝑆𝑃𝐿 𝜆2
− = 𝑐𝑠 and 𝑟0( 𝑡𝑖0

+) = 1 − 𝑟1  

𝐼𝐿 − 𝑆𝐿 𝜆2
− = 𝑐𝑠  

𝐼𝐿 − 𝑆𝐻
𝑟  𝜆2

− = 𝑐𝑠 and 𝑟0( 𝑡𝑖0
+) = 1 − 𝑟1  

𝑆𝐼𝐻 − 𝑆𝐻
0  𝜆2

− = 𝑐𝑙 − 𝑐1  

𝑆𝐼𝐻 − 𝑃𝐻  Excluded  

𝑆𝐼𝐻 − 𝑃𝐿  Excluded  

𝑆𝐼𝐻 − 𝑆𝑃𝐻 𝜆2
− = −𝜆1

+ + 𝑐0 + 𝑐𝑝  

𝑆𝐼𝐻 − 𝑆𝑃𝐿  Excluded 

𝑆𝐼𝐻 − 𝑆𝐿  Excluded 

𝑆𝐼𝐻 − 𝑆𝐻
𝑟   𝜆1

+ + 𝜆2
− = 𝑐0 and 𝑟0( 𝑡𝑖0

+) = 1 − 𝑟1 

𝑆𝐼𝐿 − 𝑆𝐻
𝑟  𝜆2

− = 𝑐𝑙 − 𝑐1  

𝑆𝐼𝐿 − 𝑆𝑃𝐿 𝜆2
− =  𝑐𝑝 + 𝑐0 − 𝜆1

+
  

𝑆𝐼𝐿 − 𝑃𝐿  Excluded 

where, 𝜆2( 𝑡𝑖0
−),  𝜆1( 𝑡𝑖0

+) and  𝜆1( 𝑡𝑖0
−) are denoted as 𝜆2

−
, 𝜆1

+
 and  𝜆1

−
. 

Table 6 is achieved.                                                                                                    □ 

Proof of Corollary 1 
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If the customers’ reaction always remains at the state of 𝑟0 = 0, we have 

𝑟0(𝑇 − 𝑡0) = [1 − 𝜃
𝑏(𝑇−𝑡0)

𝑃C−1
]+ = 0, 𝑟0(𝑡𝑖0) = [1 − 𝜃

𝑏(𝑡𝑖0)

𝑃C−1
− 𝜃𝑇 + 𝜃𝑡𝑖0]+ = 0, 

and 𝑟0(0) = [1 − 𝜃𝑇]+ = 0.                                         (E12) 

According to Table 4, no backorder occurs at Inventory Stage 1 if  𝑟0 = 0. Therefore,  

𝑏(𝑡𝑖0) = 0, and (E12) equals to  

1 − 𝜃
𝑏(𝑇−𝑡0)

𝑃C−1
≤ 0 and 1 − 𝜃𝑇 + 𝜃𝑡𝑖0 ≤ 0.                                (E13) 

(i) About 𝑰𝑯 − 𝑺𝑰𝑯 − 𝑺𝑷𝑯: 

As indicated in Figures 3-5, the optimal strategy is determined as 𝐼𝐻 − 𝑆𝐼𝐻 − 𝑆𝑃𝐻 

under 𝑟0 = 0, if it is optimal to start with  𝐼𝐻 and terminates with 𝑆𝑃𝐻.  That is, 

𝜆2(0) < 𝑐𝑠, and 𝑐𝑠 < 𝑐𝑝 + 𝑐0 < 𝑐𝑙 − 𝑐1.                       (E14) 

Next, we identify the terminal quantity of the backlogged demand and the time point 𝑡𝑖0, 

along with the initial value 𝜆2(0) of the co-state variable 𝜆2.  

First, as indicated in 𝑓3 , the backlogged demand grows at the rate of 1 − 𝑟1  in 

Inventory Stage 2. Hence, the terminal quantity of the backlogged demand is determined 

as  

𝑏(𝑇 − 𝑡0) = (1 − 𝑟1)(𝑇 − 𝑡0 − 𝑡𝑖0).                                  (E15) 

Substituting (E15) into (E13), we have  

𝑇 ≥
𝑃C−1

𝜃2𝑡0
+ 𝑡𝑖0 + 𝑡0, and  𝑇 ≥

1

𝜃
+ 𝑡0 + 𝑡𝑖0.                                     (E16) 

Second, observing the inventory consumption speed in the process of using 𝐼𝐻 and 𝑆𝐼𝐻, 

the time point 𝑡𝑖0 is identified by the following equation: 

𝐼0 = 𝑡𝑠 + (1 − 𝑟1)(𝑡𝑖0 − 𝑡𝑠).                                        (E17) 

Where 𝑡𝑠 is given by  

𝜆2(𝑡𝑠) = 𝜆2(0) + 𝑐ℎ𝑡𝑠 = 𝑐𝑠.                                           (E18) 

Last, according to the transition 𝑆𝐼𝐻 − 𝑆𝑃𝐻 at time 𝑡𝑖0 (Table 6), we have 𝜆2( 𝑡𝑖0
−) =

−𝜆1( 𝑡𝑖0) + 𝑐0 + 𝑐𝑝, where, the co-state variable 𝜆2 is defined as 𝜆2 = 𝜆2(0) + 𝑐ℎ𝑡, and 

the co-state variable 𝜆1 is a constant if 𝑟0 = 0. Together with 𝜆1( 𝑇 − 𝑡0) = 0, we have 

𝜆2(0) + 𝑐ℎ𝑡𝑖0 = 𝑐0 + 𝑐𝑝, that is,  

 𝜆2(0) = 𝑐0 + 𝑐𝑝 − 𝑐ℎ𝑡𝑖0.                                      (E19) 

Based on (E17)-(E19), we have 
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𝑡𝑠 = 𝐼0 − 𝜃𝑡0
𝑐0+𝑐𝑝−𝑐𝑠

𝑐ℎ
, 𝑡𝑖0 = 𝐼0 + (1 − 𝜃𝑡0)

𝑐0+𝑐𝑝−𝑐𝑠

𝑐ℎ
, and 

 𝜆2(0) = 𝜃𝑡0(𝑐0 + 𝑐𝑝) + (1 − 𝜃𝑡0)𝑐𝑠 − 𝑐ℎ𝐼0.                       (E20) 

Substituting (E20) into (E14) and (E16), Corollary 1(i) is proved. 

(ii) About 𝑺𝑰𝑯 − 𝑺𝑷𝑯: 

Similarly, the optimal strategy is determined as 𝑆𝐼𝐻 − 𝑆𝑃𝐻 under (E16), if 

𝜆2(0) > 𝑐𝑠, and 𝑐𝑠 < 𝑐𝑝 + 𝑐0 < 𝑐𝑙 − 𝑐1.                               (E21) 

According to the inventory consumption speed when using 𝑆𝐼𝐻 , the time point 𝑡𝑖0  is 

identified as 

𝐼0 = (1 − 𝑟1)𝑡𝑖0.  ↔  𝑡𝑖0 =
𝐼0

𝜃𝑡0
.                                   (E22) 

Substituting (E19) and 𝑡𝑖0 into (E16) and (E21), Corollary 1(ii) is proved. 

(iii) About 𝑰𝑯 − 𝑷𝑯: 

The optimal strategy is determined as 𝐼𝐻 − 𝑃𝐻  under (E13) if it is optimal to start with 

 𝐼𝐻 and terminates with 𝑃𝐻.  That is, 

𝜆2(0) < 𝑐𝑠, and 𝑐𝑠 > 𝑐𝑝 + 𝑐0.                                (E23) 

According to the transition 𝐼𝐻 − 𝑃𝐻 at time 𝑡𝑖0 (see Table 6), 𝜆2(0) is achieved as (E19), 

where 𝑡𝑖0 is given as 

𝑡𝑖0 = 𝐼0.                                                (E24) 

On the other hand, the backlogged demand 𝑏(𝑇 − 𝑡0) derived from pure compensation 

𝑃𝐻  is given as 

 𝑏(𝑇) = 𝑇 − 𝑡0 − 𝑡𝑖0.                                         (E25) 

By substituting (E24) - (E25) into (E13) and (E23), Corollary 1(iii) is achieved.    

(iv) About 𝑰𝑯 − 𝑺𝑰𝑯 − 𝑺𝑯
𝟎  or 𝑺𝑰𝑯 − 𝑺𝑯

𝟎 : 

No backlogged demand appears in Inventory Stages 1-2. Hence, the terminal quantity 

of the backlogged demand is determined as 𝑏(𝑇 − 𝑡0) = 0, that is, 𝑡𝑤𝑎𝑖𝑡 (𝑇 − 𝑡0) = 0. The 

optimal strategy 𝐼𝐻 − 𝑆𝐼𝐻 − 𝑆𝐻
0  can be excluded from 𝑟0 = 0.                                                     □ 






