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A B S T R A C T   

Managing order pipeline inventory is important for controlling unwanted system dynamics, especially the 
bullwhip effect. We analytically explore the impact of desired target order pipeline inventory, advocated as a key 
decision in managing pipeline inventory, on system dynamics performance. Using control theory and system 
dynamics simulation, we evaluate two control mechanisms, termed as Reactive Pipeline Control (RPC) and Pro
active Pipeline Control (PPC) approaches, in a nonlinear forbidden returns supply chain. We derive the analytical 
expressions of bullwhip under shock and seasonal demands and propose bullwhip avoidance strategies. The 
results indicate that an RPC based system always shows slower inventory convergence speed than that in the PPC 
based system, although the system with PPC policy may produce more unwanted oscillatory behaviour. Also, 
PPC always generates more bullwhip than that in an RPC-controlled system regardless of physical delays and 
system control parameters e.g. forecasting and inventory adjustment. Furthermore, compared with the linear 
system, the nonlinear forbidden returns system always generates less bullwhip and less oscillation at the expense 
of slow inventory recovery speed regardless of order pipeline control policies. Managers may consider different 
order pipeline control policies by jointly assessing their inherent system structure, control policies and customer 
demand characteristics, such as frequency and variance.   

1. Introduction and contributions 

System dynamics plays a critical role in influencing supply chain 
performance, especially given the current volatile market environment 
(Spiegler and Naim 2017). Dynamic characteristics, particularly the 
bullwhip effect (Lee et al., 1997), are considered the main source of 
business disruption (Wang and Disney 2016). This effect refers to a 
phenomenon in which low variation in market demand causes signifi
cant changes in upstream production for suppliers and has associated 
costs, such as ramping up/down of machines, hiring and firing of staff 
and increased/decreased inventory levels (Lin et al., 2017). 

An important cause of bullwhip is the inappropriate control of order 
pipeline inventory (Sterman 1989; Disney and Towill 2005; Springer and 
Kim 2010). Order pipeline inventory refers to the work-in-process 
(WIP)/in-transit inventory after order placement by buyers but before 
delivery of them. It has been experimentally and empirically shown that 
decision makers often ignore, underestimate or overestimate order 

pipeline inventory (Sterman 1989; Croson and Donohue 2006; Croson 
et al., 2014; Udenio et al., 2017), leading to supply chain instability and 
high bullwhip effect. Top companies such as Intel and AstraZeneca have 
reported a number of cases where managing pipeline inventory infor
mation remains a significant challenge for supply chain practitioners 
(Hopp and Spearman, 2011; Lin et al., 2018). 

Theoretically, it has been proven that order pipeline control can be 
achieved by incorporating an order pipeline adjustment feedback loop 
via comparison of the desired and actual pipeline inventory in the 
ordering process (Lin et al., 2017). However, a key challenge is the 
setting of desired order pipeline inventory in such a feedback loop (Ster
man 2000). Most studies have treated the desired pipeline inventory as a 
function of forecasted demand and estimated lead times in a linear 
order-up-to (OUT) policy (e.g., Disney et al., 2006a,b; Udenio et al., 
2017; Udenio et al., 2022) or constrained OUT system (e.g., Wang et al., 
2012; Wang et al., 2014; Ponte et al., 2017; Disney et al., 2021). This 
ignores another recognised setting method, as experimentally reported 

* Corresponding author. 
E-mail addresses: Junyi.Lin@xjtlu.edu.cn (J. Lin), huanghf@njust.edu.cn (H. Huang), lss@nau.edu.cn (S. Li), naimmm@cardiff.ac.uk (M.M. Naim).  

Contents lists available at ScienceDirect 

International Journal of Production Economics 

journal homepage: www.elsevier.com/locate/ijpe 

https://doi.org/10.1016/j.ijpe.2023.109061 
Received 22 March 2022; Received in revised form 12 September 2023; Accepted 3 October 2023   

mailto:Junyi.Lin@xjtlu.edu.cn
mailto:huanghf@njust.edu.cn
mailto:lss@nau.edu.cn
mailto:naimmm@cardiff.ac.uk
www.sciencedirect.com/science/journal/09255273
https://www.elsevier.com/locate/ijpe
https://doi.org/10.1016/j.ijpe.2023.109061
https://doi.org/10.1016/j.ijpe.2023.109061
https://doi.org/10.1016/j.ijpe.2023.109061
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpe.2023.109061&domain=pdf


International Journal of Production Economics 266 (2023) 109061

2

by Sterman (2000), in which the decision maker may consider not only 
estimated demand and lead times but also on-hand stock fluctuations as 
the desired pipeline setting (Sterman 2000). 

Springer and Kim (2010) and Lin et al. (2018) assessed the impact of 
different desired pipeline settings on system dynamics performance. 
However, the two studies assumed their supply chains were completely 
linear. In supply chain system structures, nonlinearity can naturally 
occur through the existence of physical and economic constraints; for 
instance, capacity and returns constraints in manufacturing and ship
ping processes (Spiegler et al., 2016; Ponte et al., 2017). Although the 
constrained capacity may be relaxed by adopting an outsourcing strat
egy, linearity assumptions may ignore an important constraint in prac
tice: the buyer (e.g., manufacturer) is often not allowed to freely return 
its excess inventory to suppliers. Mathematically, this means the order 
placed on the supplier cannot be negative (Wang et al. 2012, 2014). It 
has been demonstrated that a forbidden returns policy plays a key role in 
influencing the dynamics of inventory systems—sometimes even a 
dominant role (Nagatani and Helbing 2004; Wang et al., 2014; Lin et al., 
2020). When free-returns assumptions are removed, complex dynamic 
behaviours are revealed. More importantly, oscillations generated 
internally by the system itself, rather than by the external environment, 
may arise. 

Motivated by practical observations and research gaps, our aim is to 
analytically explore the impact of the desired order pipeline setting—
with due consideration of visibility and hence estimate of the lead 
time—on the bullwhip phenomenon when both free returns and 
forbidden returns scenarios are considered. Our key contributions are as 
follows. 

1. We analytically assess the dynamics of different desired order pipe
line inventory policies when both free and forbidden returns be
tween manufacturer and supplier are considered. This study extends 
the analysis of pipeline inventory dynamics from the traditional 
linear OUT system to a generalised nonlinear proportional OUT 
system with a returns constraint. An analysis in the time domain and 
frequency domain allows us to assess the dynamic behaviour of the 
supply chain system in responding to demand volatility and 
seasonality. 

2. We analytically derive a bullwhip expression in the time and fre
quency domains in which the corresponding ‘shock’ and ‘seasonal’ 
customer demands are assumed. In particular, for frequency analysis, 
we derive bullwhip as a function of the demand frequency and the 
supply chain system structure, highlighting the importance of jointly 
considering the endogenous system feedback control structure and 
exogenous demand characteristics. Mathematically approximate 
closed-form results are derived to predict the propagation of order 
fluctuations in the nonlinear forbidden returns context. 

The rest of the paper is structured as follows. Section 2 reviews the 
relevant literature and highlights research gaps. Section 3 presents the 
returns-forbidden-based OUT models with different desired order 
pipeline settings. Section 4 introduces the main analysis methods 
adopted in this study with the detailed dynamics analysis undertaken in 
Section 5 and 6. Extensive numerical simulation is conducted in Section 
7 and all results and corresponding managerial implications are dis
cussed in Section 8. A final discussion and conclusion can be found 
Section 9. 

2. Literature review 

We review two themes in the literature: 1) order pipeline inventory 
dynamics and 2) inventory dynamics with return-forbidden constraints. 

2.1. Research on order pipeline inventory dynamics 

The bullwhip effect (Lee et al., 1997; Yang et al. 2021)—also known 
as demand information amplification or the Forrester effect (Forrester, 
1958)—is frequently observed in industries (Chen and Lee 2012). Based 
on Zotteri’s (2013) classification, there are three main streams of 
research relating to bullwhip: theoretical, empirical and natural exper
imental. The first focusses on its causes and potential solutions, with 
information transparency as a possible remedy (e.g., Chen et al., 2000; 
Cachon and Fisher 2000; Lee et al., 1997). The second stream adopts the 
well-known Beer Game or its variants to test hypotheses on causes and 
potential solutions (Croson and Donohue 2003, 2006; Croson et al., 
2014). Finally, natural experimental research offers empirical evidence 
for the existence, scope and significance of bullwhip for several in
dustries (Cachon et al., 2007; Bray and Mendelson, 2012; Shan et al., 
2014). 

Our study is in the first, theoretical, stream. We focus on control of 
order pipeline information (Disney and Towill 2005; Croson and 
Donohue 2006; Springer and Kim 2010; Croson et al., 2014; Lin et al., 
2018; Yang et al., 2021). The common conclusion is that, driven by the 
lack of pipeline transparency, decision makers tend to ignore or un
derestimate the supply pipeline and the associated feedback loop, which 
creates bullwhip effect and supply chain instability. Notably, bullwhip 
exists even when supply pipeline information is transparent and there is 
no underestimation (Wu and Katok 2006). 

Given the order pipeline feedback loop incorporated in the ordering 
policy decision process, there are two associated challenges: (1) the 
estimation of real-time physical delay (e.g., production lead times) and 
(2) the desired pipeline setting methods. For the former, several re
searchers (Towill et al., 1997; Disney and Towill 2005; Aggelogiannaki 
et al., 2008) have explored different control methods to improve the 
adaptability of the supply chain system in accurately estimating lead 
times and pipeline inventory. 

Regarding the second challenge, Sterman (2000, p. 714) discussed 
two desired pipeline settings for pipeline inventory management 
experimentally identified in the Beer Game. The first setting considers 
the product of constant estimated lead times and demand, whereas for 
the second setting, the on-hand inventory adjustment is added into the 
first pipeline settings. Most studies have simply adopted the first setting 
method (e.g., Dejonckheere et al., 2003; Disney et al., 2016; Ponte et al., 
2017; Disney et al., 2021). To the best of our knowledge, only two 
studies have explored the impact of these two desired pipeline inventory 
settings on system dynamics performance. Specifically, Springer and 
Kim (2010) named the two mechanisms as static and dynamic pipeline 
control, and analytically compared the two settings in a two-stage linear 
supply chain system based on a pre-assumed ‘shock’ demand pattern. 
They found that bullwhip can be minimised by adopting static pipeline 
control. However, the inventory dynamics cost can be minimised by 
using dynamic pipeline control. Lin et al. (2018) highlighted the similar 
impact of these two control methods in a linear assemble-to-order (ATO) 
system. 

The above two studies assumed that returns between manufacturer 
(or buyer) and supplier are allowed. However, the result derived for a 
free-returns environment may not be applicable to the forbidden returns 
environment commonly observed in many industries. This has greatly 
limited the applicability of published results and has made it difficult to 
fully explain oscillations caused by internal factors (Lin et al. 2020, 
2022). In the next section, we review existing insights about the dy
namics of supply chains with returns constraints to further highlight our 
research positioning. 
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2.2. Research on inventory dynamics with returns constraints 

In supply chain system structures, capacity and order returns con
straints are the two most common nonlinearities present in practice (Lin 
and Naim, 2019). Several studies (e.g., Ponte et al., 2017; Spiegler and 
Naim 2017; Cannella et al., 2018) have explored the impact of capacity 
constraints in a traditional OUT policy by setting desired order pipeline 
inventory as a function of forecasted demand and estimated lead times. 
The general conclusion is that the capacitated supply chains may benefit 
from improved dynamics performance relative to unconstrained ones, 
since the capacity limit acts as a smoothing filter. 

Also, several studies have explored the impact of returns assumptions 
on the dynamics of supply chains. From a control engineering perspec
tive, Wang et al. (2012) and Wang et al. (2014) explored the stability 
boundaries of forbidden returns to identify a set of behaviours in the 
unstable region. Also, Wang et al. (2015), Spiegler and Naim (2017) and 
Lin and Naim (2019) adopted describing functions (DF) to study the 
order-constrained supply chains. The impact of forbidden returns pol
icies on system dynamics performance is also studied by simulation. 
Chatfield and Pritchard (2013) showed that the free-returns assumption 
may systematically overestimate the bullwhip effect. Dominguez et al. 
(2015) found that the impact of returns conditions (returns or no 
returns) on the bullwhip effect is greatly influenced by whether a supply 
network is serial or divergent. 

However, all previous nonlinear studies set the desired order pipe
line inventory as a function of forecasted demand and estimated lead 
times based on a traditional OUT policy. We term this policy as ‘reactive 
pipeline control’ (RPC) policy. It ignores the fact that decision markers 
may adjust the desired order pipeline change via additional on-hand 
inventory fluctuations, as experimentally reported by Sterman (2000). 
The ‘proactive pipeline control’ (PPC) policy is adopted to define such 
policy. This motivates us to explore the dynamics of different desired 
order pipeline settings in a nonlinear, forbidden returns environment. 

2.3. Summary of research gaps 

Table 1 summarises the main relevant literature and the focus of this 
paper based on Sections 2.1 and 2.2. 

From Table 1, our research position can be clearly highlighted: this is 
the first study that explores the dynamic implications of different 
desired pipeline settings in a non-linear forbidden returns supply chain 
context. Specifically, it has been identified that most researchers who 
focus on the dynamics of a forbidden returns policy simply set the 
desired order pipeline inventory as a function of estimated demand and 
lead times. This may ignore an alternative desired order pipeline setting 
where a decision maker may react to a change in order pipeline in
ventory by considering their on-hand inventory fluctuation (Sterman 
2000; Croson and Donohue 2006). Although Springer and Kim (2010) 
examined two pipeline settings in great detail, we extend their study by 
relaxing several important assumptions. Specifically, we examine the 
impact of forbidden returns policy on dynamic behaviour, thus relaxing 
their linearly unconstrained system that cannot represent the practical 
scenario where returns between manufacturer and supplier are not 
allowed. Also, Springer and Kim’s (2010) model, based on Beer Game 
settings, oversimplified real-world manufacturing system by assuming 
known demand patterns, order lost-sales and accurate lead time esti
mation. We relax these assumptions by developing a backlogged 
order-up-to model with forecasting and incorporating estimated lead 
time parameters. As the result, our order-up-to model can better reflect a 
practical manufacturing inventory replenishment system and offer new 
insights into order pipeline policies, and the impact of forecasting and 
estimated lead times on system dynamics performance. 

3. Preliminaries 

We study a single-echelon supply chain system that represents the 
production–inventory system formed by a customer placing orders with 
a manufacturer (Disney et al., 2021). The customer, depending on the 

Table 1 
Summary of relevant literature.  

Authors Type of system Desired order 
pipeline 
settings 

Key objectives Findings 

Springer and Kim 
(2010) 

Linear unconstrained OUT 
policy (i.e., returns allowed) 

RPC and PPC 
policies 

Analytically compare two settings in 
responding to impulse demand (i.e., a demand 
shock) 

RPC minimises bullwhip, PPC improves inventory 
dynamics. 

Wang et al. (2012) 
and Wang et al. 
(2014) 

Nonlinear constrained OUT 
policy with forbidden returns 

RPC policy Explore the stability boundaries of the 
forbidden returns OUT system 

Criteria for different types of dynamic behaviour are 
derived, including convergence, periodicity, quasi- 
periodicity, chaos and divergence. 

Chatfield, and 
Pritchard (2013) 

Multi-stage nonlinear 
constrained supply chain with 
forbidden returns 

RPC policy Explore the impact of returns assumption on 
the bullwhip effect in multi-stage supply chain 
systems 

Returns allowance significantly increases bullwhip in 
supply chains. 

Dominguez et al. 
(2015) 

Nonlinear constrained supply 
chain network (serial v. 
divergent) with forbidden 
returns 

RPC policy Investigate the impact of returns conditions 
(returns v. no returns) on the bullwhip effect 
under a serial and divergent supply chain 
network configuration 

Returns have a lower impact on bullwhip and 
transport costs in divergent supply chains than in 
serial supply chains. 

Wang et al. (2015) Nonlinear constrained OUT 
policy with forbidden returns 

RPC policy Analytically explore the impact of forbidden 
returns on bullwhip in serial supply chains 

Forbidden returns contribute to a reduction in 
bullwhip. 

Spiegler and Naim 
(2017) 

Nonlinear constrained OUT 
policy with forbidden returns 
and shipment constraints 

RPC policy Investigate the effect of non-negative order 
and shipment constraints on dynamic 
performance 

The root causes of sustained oscillation are identified. 
Lead and lag compensation strategies are proposed to 
reduce oscillations. 

Lin et al. (2018) Linear ATO system (i.e., returns 
allowed) 

RPC and PPC 
policies 

Assess the impact of main system control 
parameters on system dynamics performance 

Forecasting and an inventory decoupling point 
correction policy play a major role in the bullwhip 
effect for both RPC and PPC policies. 

Lin and Naim 
(2019) 

Nonlinear constrained ATO 
system with forbidden returns 
and capacity constraints 

RPC policy Assess the impact of nonlinear forbidden 
returns and capacity constraints on system 
dynamics performance in ATO systems 

Forbidden returns contribute to bullwhip reduction, at 
the expense of slower inventory recovery speed. 

This study Nonlinear constrained OUT 
policy with forbidden returns 

RPC and PPC 
policies 

Analytically explore the impact of two 
different desired pipeline settings in a 
forbidden returns production inventory 
system 

RPC yields slower inventory convergence while PPC 
produces unwanted oscillations. PPC generates more 
bullwhip regardless of physical delays and system 
control parameters. Forbidden returns generate less 
bullwhip and less oscillation but slow inventory 
recovery for both RPC and PPC.  
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industry and sourcing strategy, can be a distributor or a retailer. We 
develop a stylised system dynamics model and focus on the material and 
information flows of this production–inventory system at an aggregate 
level. Differing from the application of stochastic theory in studying 
supply chain dynamics, our model is fundamentally deterministic. This 
is because we analyse complicated dynamic behaviour, namely the 
bullwhip effect driven by feedback loops, nonlinearities and delays, 
which depend on various deterministic cause-and-effect relationships be
tween variables. The analysis derived from a deterministic model can 
assist with long-term strategic planning (e.g., capacity planning, labour 
expansion, inventory holding) and identifies benchmark system dy
namics performance for subsequent disaggregate dynamic modelling 
and analysis (Lin et al., 2020). We make several general assumptions as 
follows. 

Manufacturing process: The manufacturing line produces new 
products if necessary. Raw materials from qualified suppliers arrive in a 
just-in-time manner; that is, no raw material inventory is held. Further, 
in line with Disney et al. (2016) and Disney et al. (2021), the 
manufacturing process has unlimited capacity and an average lead time. 
In practical terms, we can analytically assess the capacity unevenness 
issue identified in many industries, such as the semiconductor industry 
(Karabuk and Wu 2003; Lin et al., 2018), which is driven by reactive 
dynamics capacity adjustment. That is, managers reactively adjust 
production capacity because they can determine maximum capacity 
requirement, leading to capacity unevenness. 

Stock points and backlog orders: The capacity of all stock points is 
infinite. Demands that cannot be fulfilled immediately are backordered 
and backlog orders are presented by the negative inventory in our dy
namic analysis. 

3.1. System dynamics model 

The generalised OUT policy in a continuous time manner is adopted 
for inventory replenishment (Kim and Springer 2008; Lin et al., 2020); 
the equivalent discrete time model (Dejonckheere et al., 2003; Udenio 
et al., 2017) can be considered depending on the real-world production 
system—that is, according to whether it is a periodic or a continuous 
review (Warburton and Disney 2007). The OUT policy is widely 
implemented in practice (Wang and Disney 2016; Udenio et al., 2017; 
Dominguez et al., 2020). All system notations are illustrated in Table 2. 

Specifically, the desired order quantity, o(t), placed with a raw 
material supplier is determined by the difference between the reorder 
point, ro(t), and the total inventory including i(t) and w(t): 

o(t)= ro(t) − (i(t) +w(t)), (1)  

where o(t) aims to bring the total system inventory, i(t)+ w(t), up to 
ro(t). As illustrated in Equation (2), ro(t) depends on d̂(t) during the 
estimated lead time, τ̂l , which determines the inventory-offset error 
(Zhou et al., 2017), plus a constant β (e.g., days, weeks’ supply), 
although other approaches such as setting the function as d̂(t) can be 
considered (Springer and Kim 2010). Thus: 

ro(t) = d̂(t) • τ̂l + β, (2)  

where the simple exponential smoothing (SES) forecasting technique is 
applied for estimating d̂(t) smoothed by τa, following Spiegler and Naim 
(2017) and Lin et al. (2020): 

dd̂(t)

dt
=

d(t) − d̂(t)
τa

. (3) 

It should be noted that more sophisticated methods, such as expo
nential smoothing with additional seasonality (Udenio et al., 2022), may 
perform better than SES for some pre-determined demand patterns, such 
as deterministic seasonal demand with known seasonality. However, 
SES is a fairly robust method for model selection errors, and its 

simplicity, intuition, small computational effort and ease of application 
has been well recognised in practice (Disney et al., 2006a,b). 

By substituting Equation (2) into (1) and rearranging it, we obtain: 

o(t)= d̂(t)+ (d̂(t) • (τ̂l − 1) − w(t)) + β − i(t), (4)  

where d̂(t) • (τ̂l − 1) is the desired pipeline inventory policy. In our 
continuous time analysis, d̂(t) • (τ̂l − 1) becomes d̂(t) • τ̂l , as the delay in 
the order of events is not required in the continuous analysis (Disney 
et al., 2006a,b) and thus Equation (4) can be re-written as: 

o(t)= d̂(t)+ (d̂(t) • τ̂l − w(t)) + (β − i(t)). (5) 

The proportional controller, δ,∀δ ∈ (0,1), is added to Equation (5) to 
represent the proportional adjustment of the WIP inventory and on-hand 
inventory errors. Compared with the OUT policy—that is, δ = 1—this 
policy is widely recognised as improving system dynamics performance 
(Wang and Disney 2017): 

o(t)= d̂(t)+ δ • (d̂(t) • τ̂l − w(t)) + δ • (β − i(t)), (6)  

where δ • (d̂(t) • τ̂l − w(t)) = wc(t) and δ • (β − i(t)) = ic(t) are the pro
portional correction of on-hand and pipeline inventory errors, respec
tively. i(t) is the cumulative level between r(t) and d(t); that is, whereas 
d(t) depletes i(t), r(t) replenishes it. Hence: 

di(t)

dt
= r(t) − d(t), (7)  

where r(t) is delayed o(t) because of production lead times (τl), which 
are determined by the corresponding w(t) and τl. A first-order delay with 
deterministic τl is assumed (Udenio et al., 2017). This represents the 
production smoothing element that represents the rate at which the 
production unit adapts to changes in o(t) (Lin et al., 2017): 

dw(t)

dt
= o(t) − r(t), r(t) =

w(t)
τl

. (8)  

3.2. Returns policy 

We focus on two distinct returns policies between the raw material 
supplier and the manufacturer in an OUT-based system: (1) free returns 
and (2) forbidden returns. Specifically, the traditional linear OUT policy 
assumes that returns between the supplier and manufacturer are 
allowed; that is, a negative value of ot is allowed. This policy is well 
recognised in research on the bullwhip effect (Chatfield and Pritchard 
2013; Dominguez et al., 2015; Lin and Naim 2019). However, unless 

Table 2 
Notation for system variables, parameters and metrics.  

Notation for system variables Notation for system parameters 

r(t) Receipt rate of new products τl Manufacturing lead times 
d(t) Customer demand rate τ̂l Estimated lead times 
d̂(t) Forecasted demand rate τa Forecast smoothing factor 
i(t) On-hand inventory δ Adjustment speed for proportional 

OUT 
ic(t) Inventory error correction 

rate 
β Safety stock 

o(t) Desired order rate a Exponential smoothing coefficient 
oa(t)

w(t)
Actual order rate (under 
forbidden returns policy) 
WIP inventory 

Notation for system metrics 
os Order peak ratio in responding to a 

sustained shock demand 
wr(t) RPC policy dv Demand variance 
wp(t) PPC policy op Order variance ratio in responding 

to periodic/seasonal demand 
wc(t) Proportional correction of 

on-hand inventory errors 
iv Inventory variance 

ro(t) Reorder point ωn Natural frequency   
ζ Damping ratio   
BW Bullwhip effect  
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there are quality or warranty issues, returns between manufacturer and 
supplier are forbidden in many real-world supply chain systems (Wang 
et al. 2012, 2015; Chatfield and Pritchard 2013). This policy creates a 
nonlinear OUT system: 

Linear free returns : o(t)= oa(t) = ro(t) − (i(t) +w(t)),

Nonlinear forbidden returns : oa(t)= [ro(t) − (i(t) + w(t))]+. (9)  

where [ro(t) − (i(t) + w(t))]+ is the maximum operator. By truncating 
negative values, we can capture the influence of the forbidden returns 
policy. 

3.3. Pipeline policy 

Pipeline inventory management plays a key role in the bullwhip ef
fect (Springer and Kim 2010). The target pipeline, as a decision variable, 
can be set in two distinct ways (Sterman 2000), as shown in Fig. 1. 

First, the production manager at the manufacturer may simply esti
mate the demand and manufacturing lead times as constants and use the 
product of these two parameters to determine the desired pipeline. This 
policy is well recognised in practical OUT-based systems, and we term it 
as the Reactive Pipeline Control (RPC) policy: 

RPC : wr(t)= d̂(t) • τ̂l . (10) 

Alternatively, the decision maker may adjust the desired pipeline 
inventory based on not only estimated demand and lead times but also 
on on-hand stock fluctuations. In this scenario, a sudden increase in the 
receipt of the on-hand product above its target inventory may lead the 
decision maker to reduce the target pipeline stock, although the fore
casted demand may remain the same. A lower pipeline stock target 
would then further lower the order rate for materials. We term this 
target pipeline setting as the Proactive Pipeline Control (PPC) policy: 

PPC : wp(t) = [d̂(t) • τ̂l + δ • (β − i(t)) • τ̂l ]
+
. (11) 

Note that the maximum operator is added to the dynamic pipeline 
policy to ensure a non-negative target pipeline; that is, the manufacturer 
will aim to bring the pipeline inventory to zero if the target level drops 
below zero. According to these illustrated returns and target pipeline 
policies, four scenarios for an OUT-based supply chain system can be 
derived, as shown in Table 3. 

4. Method 

4.1. Time domain analysis 

In the time domain analysis, we consider the transient volatility of 
the production–inventory system in responding to a shock exogenous 
demand increase; namely, the Heaviside function, d(t) = 0,∀t < 0,dt =

1,∀t ≥ 0. A demand shock or demand jump (Biçer et al., 2018) is often 

observed in practice as a cause of supply chain risks, such as the sudden 
increase in demand for medical care products during the early outbreak 
period of COVID-19 pandemic (Ivanov 2021). Also, demand shocks can 
be observed during the early stage of manufacturing innovative prod
ucts, such as in the case of electric cars and lithium demand shortages 
(Zhou et al., 2017; Biçer et al., 2018). 

Usually, three criteria are used to measure the transient volatility of 
orders and inventory (Towill et al., 2007): (1) the new equilibrium status 
of the inventory and order, which is directly linked to the customer 
service level; (2) the transient order peak overshoot and inventory un
dershoot for measuring the bullwhip effect cost and inventory backlog 
orders; and (3) the inventory and order convergence speed and oscilla
tion measured by the natural frequency (ωn) and the damping ratio (ζ). 

4.2. Frequency domain analysis 

In frequency domain analysis, the deterministic sinusoid, that is, 
d(t) = a • cos(ωt)+ β,∀β,a,ω ∈ R,β > a > 0, is assumed to be the system 
demand input. a is the amplitude of seasonal demand and β is the mean. 
ω,∀ ω ∈ [0, 2π] is the periodicity of the seasonal component in the de
mand. For a demand observed every period, the seasonality—defined as 
the number of periods within a season—is equal to T = 2π

ω periods. Note 
that the ‘week’ is used as the unit for demand cycle time, T(weeks) = 2π

ω . 
If the customer demand cycle is roughly one year, T = 52 weeks; then 
ω = 0.12 rads/week. 

The deterministic sinusoid can represent the seasonal demand (i.e., 
predictable/seasonally unadjusted demand data), which is a major 
source of demand variability (Cachon et al., 2007) commonly observed 
in many industries such as fashion (Li et al., 2017) and agri-food 
(Jonkman et al., 2019). If the system is linear and time invariant, the 
steady-state amplification ratio (AR)—denoted by the ratio between the 
amplitude of orders and the amplitude of demand—can be used to 
measure the dynamic performance of the system (Dejonckheere et al., 
2003). We denote op(ω) = amplitude of orders

amplitude of demand as the AR measure. op(ω) is a 
powerful measure of system dynamics performance because it allows us 
to detect whether, and to what extent, a replenishment policy will lead 
to the order amplification for sinusoid demand with a particular demand 
frequency (Udenio et al., 2017). In particular, a robust system can be 

Fig. 1. Block diagram representation of reactive (1a) and proactive (1b) pipeline control policies.  

Table 3 
Four scenarios based on different pipeline and returns policies.  

Pipeline 
policy 

Free returns Forbidden returns 

RPC ot = ro(t) − (i(t) + w(t))
wr(t) = d̂(t) • τ̂l 

ot = [ro(t) − (i(t) + w(t))]+

wr(t) = d̂(t) • τ̂l 
PPC ot = ro(t) − (i(t) + w(t))

wp =

[d̂(t) • τ̂l + δ • (β − i(t)) • τ̂l ]
+

ot = [ro(t) − (i(t) + w(t))]+

wp =

[d̂(t) • τ̂l + δ • (β − i(t)) • τ̂l ]
+
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designed by exploring the worst-case scenario—that is, the maximum 
AR (Udenio et al., 2022)—which is well accepted as a bullwhip measure 
in frequency domain analysis (Towill et al., 2007; Udenio et al., 2022). 

Although real demand patterns are rarely perfectly sinusoid, our 
interest in the equilibrium performance is not restricted to the expec
tation of a sinusoidal demand. This is because any demand stream can be 
decomposed into a sum of sinusoids; hence, analysing the relevant fre
quency response (FR) plots (i.e., the graphical representation of op as a 
function of the demand harmonics with frequencies) provides a pre
liminary understanding of system performance with regard to any 
arbitrary demand pattern based on the amplitude of its constituent 
harmonics (Dejonckheere et al., 2003). 

Another reason for adopting op(ω) is its close relationship to the 
bullwhip effect measure if i.i.d stochastic demand is assumed in a time 
domain analysis. This means that if the input of a system consists of a 
Gaussian stream with zero mean and unity variance, the bull
whip—defined as the ratio of demand variance to order variance (Lee 
et al., 1997)—is proportional to the ‘noise bandwidth’ of the system; 
that is, the square of the area below its FR plot, formally BE = 1

π
∫ π

0 

[op(ω)]2 (Udenio et al. 2017, 2022). 
However, linear techniques are no longer valid in a nonlinear supply 

chain system in which returns between supplier and customer are 
forbidden, as described in Equation (9). Given that such nonlinearity is 
characterised by discontinuous piecewise linear functions, the DF can be 
applied to analyse the bullwhip effect (Wang et al., 2015; Spiegler and 
Naim 2017). DF is a quasi-linear representation of a nonlinear element 
subjected to specific input signal forms such as bias, sinusoid and a 
Gaussian process (Spiegler and Naim 2017). Specifically, for a given 
sinusoid demand as input, d(t) = A • cos(ωt)+ B, the output ot can be 
approximated as follows: 

o(t)≈NA • A • cos(ωt+φ) + NB • B, (12)  

where NA is the amplitude gain, NB is the mean gain and φ is the phase 
shift. The objective of DF method is to replace the nonlinear component 
by a gain derived from the effect of the input (e.g., sinusoidal input). The 
Fourier series expansion can be applied to obtain the terms of the DF 
(NA, NB and φ): 

o(t)≈ b0 + a1 • cos(wt)+ b1 • sin(wt) + a2 • cos(2wt)+ b2

• sin(2wt)+ ⋅ ⋅ ⋅ ≈ b0 +
∑∞

n=1
(an • cos(nwt)+ bn • sin(nwt)), (13)  

where the Fourier coefficient can be determined by: 

an =
1
π

∫ π

− π
o(t) • cos(nwt) dwt, bn =

1
π

∫ π

− π
o(t) • sin(nwt) dwt, b0

=
1

2π

∫ π

− π
o(t) • dwt. (14) 

To approximate a periodic series, only the first or fundamental 
harmonic is needed; thus, we need to find the first-order coefficient of 
the Fourier series expansion demonstrated in Equation (13): 

o(t)≈ b0 + a1⋅cos(wt) + b1 ⋅sin(wt) = b0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2
1 + b2

1

√

cos(wt+φ). (15) 

By comparing Equations (15) and (12), we can obtain the gains of the 
DF as follows: 

NA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2
1 + b2

1

√

A
,NB =

b0

B
,φ= arctan

(
b1

a1

)

. (16) 

In other words, given the sinusoidal input, the output of discontin
uous nonlinearity can be approximated, not only as a function of the 
inherent system structure and policies, but also as a function of input 
properties including amplitude, mean and frequency. 

5. Analytical results 

In this section, we analytically explore the dynamic performance of 
the OUT system under RPC and PPC policies. Inventory equilibrium, 
order and inventory convergency speed and oscillations, as the perfor
mance metrics, are used to measure the dynamic performance of the 
system. Regarding the transient order peak (i.e., the bullwhip effect) as 
analysed in Springer and Kim (2010), please refer to Appendix B1 for 
details. Furthermore, following Spiegler et al. (2016) and Lin and Naim 
(2019), we assume returns are allowed, to test the system’s transient 
response under unrestricted conditions. This helps decision makers to 
understand the resulting performance of key metrics, e.g. unrestricted 
bullwhip (peak order), unrestricted inventory undershoot and oscilla
tion zone, and therefore corresponding capacity (e.g. outsourcing 
strategy) and safety stock strategies can be implemented. Note that we 
consider forbidden returns in the seasonal demand scenario, because 
frequent return requests between a supplier and customers may be 
observed, given demand fluctuations. 

5.1. Time domain analysis of a free returns system 

Recall Equation (2) in which the reorder point is set as the function of 
the estimated lead time. τ̂l is assumed to be equal to the actual pro
duction lead times to avoid inventory drift; that is, from a long-term 
perspective, the phenomenon that inventory levels do not reach the 
targeted equilibrium when a sustained shock demand has occurred. We 
derive an analytical expression for the new inventory equilibrium via 
the following proposition: 

Proposition 1. For a supply chain following the proportional OUT 
replenishment policy, when such a system, initially in equilibrium, is disturbed 
by a sudden but sustained positive unit step demand shock, the new equilibria 
of inventory for RPC and PPC are quantified′ by: 

iRPC(t)(new) = (τ̂l − τl), (17)  

iPPC(t)(new) =
(τ̂l − τl)

1 + δτ̂l
. (18) 

Proof. See Appendix A1. 
It is clear that, for both RPC and PPC systems, the inventory 

drift—the permanent inventory error from the target inventory (β =

0)—occurs if τ̂l ∕= τl. A positive value of τ̂l − τl, driven by the over
estimation of actual production lead time, will result in excess inventory 
and increased inventory holding costs. Conversely, an underestimation 
in lead times (τ̂l − τl < 0) negatively impacts customer service levels due 
to possible stock-out issues. For the RPC system—that is, Equation 
(17)—the result is well known, as per Disney and Towill (2005). 

However, interestingly, comparing Equations (17) and (18), an 
additional (1+δτ̂l) is incorporated in the denominator of the PPC sys
tem. This indicates that the inventory drift for the PPC system, if τ̂l ∕= τl, 
is completely different from that for the RPC system. If an over
estimation of actual production lead time occurs (τ̂l − τl > 0), the PPC 
system always generates less inventory drift than that in the RPC system, 
while the opposite result can be obtained if τ̂l − τl < 0. Furthermore, 
inspection of Equation (18) shows that the proportional controller, δ, 
negatively affects the final inventory drift if τ̂l ∕= τl. This means the 
traditional OUT policy (δ = 1) may increase the inventory holding cost 
and reduce the customer service level in the PPC system. 

To assess the convergence speed and oscillation level of the supply 
chain system, we evaluate ωn and ζ under RPC and PPC policies via 
following proposition: 

Proposition 2.1. For a supply chain system initially in equilibrium that is 
disturbed by a sudden but sustained unit step demand shock, if the system is 
controlled by an OUT with RPC policy (i.e., the RPC system), ωn and ζ of 
orders and inventory are determined by: 
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ωn(order)=
̅̅̅̅
δ
τa

√

; ζ(order) =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτa
+ δτa + 2

√

, (19)  

ωn(inventory)=
̅̅̅̅
δ
τl

√

; ζ(inventory) =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτl
+ δτl + 2

√

. (20)   

Proposition 2.2. If such a system is controlled by an OUT with PPC policy 
(i.e., the PPC system), ωn and ζ of orders and inventory are identical and can 
be determined by: 

a

⎞

⎠ ωn (τ̂l∕=τl) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ + δ2 τ̂l

τl

√

; ζ(τ̂l ∕= τl)=
(1 + δτl)

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτl(1 + δτ̂l)

√

, (21)  

b

)

ωn (τ̂l=τl) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δ
τl
+ δ2

√

; ζ(τ̂l = τl)=
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτl
+ 1

√

. (22) 

Proof. See Appendix A2. 
There are several observations for Proposition 2.1. First, from Equa

tion (19), ωn increases in δ and decreases in τa, indicating that the quick 
forecasting adjustment or the adjustment of inventory error can increase 
order convergence speed. When either δ or τa increases, ζ increases as 
well, which results in a decline in the number of oscillations. Note that ζ 
≥ 1 is satisfied for all positive values of δ and τa, which means that orders 
in the RPC system always produce overdamped behaviour and are 
guaranteed to be stable. Regarding inventory performance shown in 
Equation (20), the inventory recovery speed increases as τl decreases or 
δ increases, suggesting a short lead time or a quick inventory error 
adjustment can bring inventory up to target quickly (Lin et al., 2018). 

Proposition 2.2 suggests that estimated production lead times (τ̂l ) 
play an important role in influencing the convergence speed and oscil
latory behaviour of the PPC system. Equation (21) shows that τ̂l > τl 
leads to increased ωn but decreased ζ, while the opposite results can be 
derived if τ̂l < τl. This finding is consistent with empirical and experi
mental findings (Sterman 1989; Croson and Donohue 2006) that the 
inaccurate estimation of lead times—such as overestimation of τ̂l—will 
result in high convergence speed to the new equilibrium at the expense 
of an increase in the number of oscillations. Furthermore, if τ̂l = τl can 
be achieved (Disney and Towill 2005), the impact of δ on ωn and ζ is 
similar to that in the corresponding RPC system, whereas the increase of 
τl may decrease ωn and ζ, leading to poor dynamic behaviour (Lin et al., 
2017). 

Last, by inspecting Equations (20) and (22) and assuming τ̂l = τl, we 
have the following properties to compare the dynamics of order and 
inventory under different pipeline policies: 

Property 1. Under identical system policy settings, the convergence 
speed of orders in the PPC system exceeds that in the RPC system if τa <

τl
(1+δτl)

. The PPC-based system may produce more oscillations than the 
RPC-based system if τl >

τa
(1+δτa+δτ2

a )
. 

Property 2: Under identical system policy settings, the convergence 
speed of inventory in the PPC system always exceeds that in the RPC 
system, whereas the PPC-based system may produce more oscillatory 
behaviour than the RPC-based system. 

From Properties 1 and 2, PPC policy can yield quick convergence at 
the expense of possible additional unwanted oscillation. Notably, the 
RPC system cannot generate oscillatory behaviour as ζ > 1, whereas the 
PPC system can avoid oscillation only if δ is small (δ > 1

3τl
), which is not a 

realistic setting in a production environment with a long physical lead 
time. Thus, managers need to consider system trade-off design by using 
the analytical expressions of ωn and ζ to predict the system transient 
behaviour and the corresponding cost of the supply chain dynamics 
when expecting a customer demand shock. 

5.2. Frequency domain analysis of a forbidden returns system 

If demand is characterised by periodic or similar seasonal patterns, a 
negative value of o(t) (i.e., the manufacturer’s desire to return excess 
raw material to the supplier) can be frequently observed (Wikner et al., 
2017). In this section, we assess the effects of two pipeline control pol
icies on dynamic performance under forbidden returns policies. 

First, we introduce the Proposition 3.1 to compare the amplitude ratio 
in free- and forbidden returns supply chains. 

Proposition 3.1. For a supply chain controlled by proportional RPC- and 
PPC-OUT policies in responding d(t) = A • cos(ωt) + B,∀B,A,ω ∈ R,B >

A > 0, the amplitude of ot (Ao(t)) will grow exponentially under the linear 
forbidden returns policy and can be measured by: 

Ao(t)(RPC)=A •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ2 + (ω(1 + δτa + δτ̂l))
2

(ω2 + δ2)
(
1 + ω2τ2

a

)

√

, (23)  

Ao(t)(PPC)=A

• (1+ δτl)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ω2(1 + δτa)

2
+ δ2)(1 + ω2τ2

l )(
1 + ω2τ2

a

)
(ω2 + δ2 + 2δ3τl + (ω4 − ω2δ2 + δ4)τ2

l )

√

. (24)   

Proposition 3.2. Ao(t) is stabilised and bounded in the proportional RPC- 
and PPC-OUT system with forbidden returns policy. The order amplitude 
ratio can be approximated as: 

op(forbidden returns) ≈
NA • Ao(t)

A
, (25)  

NA =

B•
̅̅̅̅̅̅̅̅̅̅̅̅
1− B2

Ao(t)
2

√

Ao(t)
+ Cos− 1

(
− B

Ao(t)

)

π , (26)  

where NA is the amplitude gain based on the DF method. 
Proof. See Appendix A3. 
Proposition 3.1 suggests that the selection of order pipeline policies to 

avoid high amplitude ratio is determined by the inherent system struc
ture (τl), system control parameters (δ and τa) and external demand 
characteristics ωc. By obtaining the first-order derivative of Ao(t)(RPC)
and Ao(t)(PPC) with respect to τl and ω, the order amplitude ratios 
controlled by the RPC and by PPC policies are monotonously increasing 
in τl and decreasing in ω, suggesting that the amplitude ratio increases as 
the physical lead times increase, and decreases as the demand frequency 
increases. 

Also, by differentiating NA with respect to o(t) and β in Equation 
(26), we show that the value of NA decreases as o(t) increases and 

lim
o(t)→∞

B•

̅̅̅̅̅̅̅̅̅̅̅
1− B2

Ao(t)
2

√

Ao(t)
+Cos− 1

(
− B

Ao(t)

)

π = 1
2; that is, NA ∈

( 1
2, 1
]
. Moreover, NA in

creases as B increases. Two corresponding managerial implications can 
be identified. First, the manufacturer’s order variance tends to be sta
bilised and eventually bounded as half of the variance of customer de
mand under the forbidden returns policy. Although it is unlikely that 
Ao(t) will reach the infinite level in our two-stage downstream supply 
chain (i.e., a manufacturer and a customer), it is clear that the bullwhip 
effect can be alleviated in the forbidden returns system regardless of the 
desired pipeline control policy. 

We can conclude that this effect may not exist if (1) the average 
customer demand is sufficiently low and (2) the frequency of the 
customer demand fluctuation is sufficiently high. Correspondingly, 
managers may adopt a bullwhip effect avoidance strategy by reducing 
the average demand per order or increasing the customer purchase 
frequency. It should be noted that Equations (23), (24) and (26) form a 
complete analytical expression in predicting the bullwhip effect in the 
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forbidden returns supply chain system when both RPC and PPC control 
policies are considered. Finally, we note the following property to 
approximate the average level of orders and inventory under the 
forbidden returns policy. 

Property 3. Compared with the linear forbidden returns system, the 
forbidden returns policy leads to an increase in the mean of o(t) and i(t). The 
new mean (Bn) can be measured by: 

Bn =NB • B=
Ao(t) •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − B2

Ao(t)
2

√
+ β • Cos− 1

(
− B

Ao(t)

)

π . (27) 

Proof. We know that the equilibrium of order in the linear system 
eventually equals the mean of demand in the long-term steady state 
condition. However, owing to forbidden returns, from Equation (12), we 
know the mean of order is determined by the product of mean gain (NB)

and mean of demand (B). NB, based on the DF method in the proof of 
Proposition 3 (Appendix A3), can be obtained as follows: NB =

Ao(t)•

̅̅̅̅̅̅̅̅̅̅̅̅
1− B2

Ao(t)
2

√
+β•Cos− 1

(
− B

Ao(t)

)

B•π . 
It is easy to see NB ∈ [1,∞) as Ao(t) increases, which means the 

equilibrium of order is higher than that in the linear system under the 
steady-state condition. The mean of i(t) will be higher than that in the 
linear system owing to the increased mean of orders. 

Furthermore, we introduce the following proposition to evaluate the 
dynamic oscillations and recovery in forbidden returns supply chain 
systems: 

Proposition 4. When a forbidden returns supply chain system that is 
initially in equilibrium and is then disturbed by a sustained shock plus 
periodic demand adopts.  

(1) proportional OUT replenishment with the RPC policy, the inventory 
and order of ωn and ζ are identical and are determined by: 

ωn =

̅̅̅̅̅̅̅̅
NAδ
τl

√

ζ =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl
+ NAδτl + 2

√

, (28)    

(2) proportional OUT replenishment with the PPC policy, the inventory 
and order of ωn and ζ are identical and are determined by: 

ωn (τ̂l∕=τl) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

NA(δ + δ2 τ̂l)

τl

√

ζ(τ̂l ∕= τl)=
(1 + NAδτl)

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl(1 + δτ̂l)

√

, (29)  

ωn (τ̂l=τl) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

NA

(
δ
τl
+ δ2

)√

ζ(τ̂l = τl)=
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl
+ 1

√

(30)  

where NA =

B•

̅̅̅̅̅̅̅̅̅̅̅
1− B2

Ao(t)
2

√

Ao(t)
+Cos− 1

(
− B

Ao(t)

)

π ∈

(

1
2,1

⎤

⎥
⎥
⎥
⎦

is the amplitude gain based 

on DF approximation. 
Proof. Please see Appendix A5. 
There are several insights. First, similar to the linear system result, 

the convergence speed generated by the PPC-based system always ex
ceeds that generated by the RPC-based system, at the expense of pro
ducing more oscillatory behaviour in a nonlinear forbidden returns 
system. Second, by comparing linear analytical results, i.e. Equations 
(19)–(22), it is easy to find ωn(nonlinear) < ωn(linear) for both RPC- and 

PPC-based systems. These are 
̅̅̅̅̅̅
NAδ

τl

√
<

̅̅̅
δ
τl

√
and 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

NA

(
δ
τl
+ δ2

)√

<

̅̅̅̅̅̅̅̅̅̅̅̅̅
δ
τl
+ δ2

√
∀NA ∈

(
1
2,1
]

. This means that the incorporation of a forbidden 

returns policy leads to a slow convergence speed, e.g. a slower inventory 
recovery speed, comparing to the linear forbidden returns system. 

Furthermore, by inspecting ζ, we can conclude that ζ(nonlinear) >

ζ(linear) for both policies. That is, ζ = 1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl
+ NAδτl + 2

√
> ζ =

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτl
+ δτl + 2

√
and 1

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl
+ 1

√
> 1

2

̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτl
+ 1

√
∀NA =

( 1
2, 1
]
. This result 

implies that the forbidden returns policy can mitigate oscillations to a 
greater extent than the linear forbidden returns system. Last, regarding 
the nonlinear forbidden returns system, both ωn and ζ increase as NA or 
ai increase. This result suggests that a decrease in the customer order 
amplitude not only reduces the cost of the bullwhip effect (Dominguez 
et al., 2015; Lin and Naim 2019), but can also improve the transient 
dynamic performance of the system. Using these analytical results, 
supply chain planning managers may carefully evaluate different 
customer demand characteristics to determine the best coordination 
strategy with their suppliers. 

6. Numerical study 

In this section, we conduct extensive numerical experiments (Mat
lab) to further explore the dynamics of the proportional OUT system 
under RPC and PPC policies. Descriptions of the experimental design are 
presented in Table 4. As introduced in Section 3, convergence speed, 
oscillations, order peak and order amplitude ratio are used as perfor
mance metrics in simulations. Four experimental factors, including 
proportional controller (δ), exponential smoothing factor (τa), system 
lead times (τl) and demand frequencies (ω) cover the main system pa
rameters in the OUT policy. The baseline system parameter settings 
follow τa = 2τl = 8 (Disney et al. 2000), while we vary τa and τl between 
2 and 32 to understand the impact of different smoothing level and lead 
times on the dynamics of RPC and PPC systems. The baseline for the 
proportional controller, δ, is set as 0.5, while its value ranges between 
0.1 and 0.9 to explore the influence of slow and fast inventory correction 
speed on dynamic performance. Furthermore, three demand fre
quencies, 0.1, 0.5 and 0.9 rad/week with 0.5 rad/week as baseline are 
chosen to represent the different types of product characterised by low, 
medium and high demand frequencies, following Lin et al. (2022). Given 
that we have four experimental factors, three with five levels and one 
with three levels, the total number of experiments is 78. 

6.1. Verification 

We verify the analytical results for AR in the nonlinear forbidden 
returns system (Proposition 3) shown in Table 5. In general, our 
analytical results are reasonably accurate, although some differences 
between simulation and analytical results can be observed because the 
AR in the nonlinear system is an approximation based on the DF method. 

6.2. Amplitude ratio and order peak analysis 

In this section, we systematically assess the effects of demand fre
quency (ω) on AR under seasonal demand, and the impact of forecasting 
policy (τa), physical lead times (τl) and the proportional controller (δ) on 
order peak under shock demand. 

Fig. 2 reports the simulation results. Specifically, Fig. 2a plots AR as 
the function of demand frequency in response to seasonal demand. The 
figure shows that this effect has a concave U-shaped relationship with 
demand frequency in both the RPC and PPC systems, in which the AR 
level increases as the demand frequency increases and reaches peak 
level around ω = 0.3rad/week. Notably, on comparing the PPC- and 
RPC-based systems, we find that the difference in AR is small for the low- 
demand frequency range—that is, 0.1–0.3 rad/week—whereas the PPC 
system generates significantly higher bullwhip effect than the RPC sys
tem for the media and high-demand spectrum. 

Fig. 2b presents the impact of δ on order peak; i.e. the bullwhip effect 
measure under shock demand. Specifically, an increase in the inventory 
proportional controller, δ, increases the bullwhip effect in both the PPC 
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and RPC systems. In particular, this effect significantly increases as δ 
increases in the PPC-based system, which suggests that the RPC strategy 
should be adopted if the inventory error should be corrected quickly in 
response to a shock demand. However, the bullwhip effect decreases as δ 
increases in both the PPC- and RPC-based nonlinear systems, due to the 
incorporation of the nonlinear forbidden returns policy in which the 
increases of desired order amplitude (because of an increase in δt) 
reduce the value of Na, leading to decreases in the bullwhip effect level. 
In other words, the forbidden returns policy contributes to reducing the 
bullwhip effect (Dominguez et al., 2015). 

Fig. 2c shows the impact of lead times on order peak, or bullwhip. As 
expected, an increase in lead times increases the bullwhip effect for both 
systems, consistent with previous RPC-related studies (Chen et al., 2000; 
Towill et al., 2007). Also, as derived in Proposition 3, if the PPC policy is 
adopted, the increase of bullwhip effect is much more significant than in 
the RPC-based system as the lead times increase. This finding, similarly 
observed by Springer and Kim (2010) and Lin et al. (2018), suggests that 
to avoid a strong bullwhip effect, a PPC strategy should not be consid
ered for systems with long lead times. 

Last, the impact of τa on the bullwhip effect is shown in Fig. 2d. 
Increases in τa lead to decreases in the bullwhip effect in both linear RPC 
and PPC systems. This finding is consistent with that of previous studies 
(Chen et al., 2000; Zhang 2004; Lin et al., 2017; Lin and Naim 2019), 
showing that a gradual adjustment to forecasts can reduce the bullwhip 
effect, although adopting this strategy may reduce the inventory 
convergence speed. However, if nonlinear forbidden returns are 
considered, the impact of τa on the bullwhip effect is very limited, 
although a concave U-shaped relationship with demand frequency is 
seen for the nonlinear RPC and PPC systems. 

6.3. Inventory dynamic analysis for step demand 

In this section, we explore the dynamic performance of finished 
goods inventory under the RPC and PPC policies. Fig. 3a and b reported 
the impact of δ on i(t). Overall, the inventory convergence speed in
creases for both RPC- and PPC-based systems with an increase in δ. 
Moreover, the PPC-based system always outperforms the RPC-based 
system with lower undershoot and higher inventory convergence 

speed for the same δ. This result verifies Proposition 2. Furthermore, for 
both RPC- and PPC-based systems, the dynamic performance of finished 
goods inventory can be dramatically improved from δ = 0.1 to δ = 0.3, 
whereas the improvement is limited if δ is increased further. This result 
suggests that a slow proportional correction speed is undesirable in the 
proportional OUT system because of the high stock-out possibility and 
slow recovery speed. 

Also, an increase in τa reduces inventory convergence speed, as 
shown in Fig. 3c and d. That is, a greater weight on historical forecasting 
than on current demand leads to a decrease in the system speed response 
to a sudden demand change. This is consistent with Chen et al. (2000), 
Zhang (2004), Lin et al. (2018) and Lin and Naim (2019). However, for 
the same smoothing coefficient, the system response speed with the PPC 
policy is significantly greater than that with the RPC-based system. In 
particular, the system with the PPC policy generates oscillations for τa =

2, but no oscillations can be identified for the RPC-based system. These 
results verify prior analytical (Springer and Kim 2010; Lin et al., 2018) 
and empirical results (Sterman 2000) showing that incorporation of 
on-hand stock fluctuation feedback, as part of the target order pipeline 
settings, generates a faster system response than the method that only 
forecast and lead times are considered target pipeline settings. 

Finally, Fig. 3e and f shows the impact of τl on the dynamics of i(t). It 
can be seen that the PPC-based system significantly outperforms the 
corresponding RPC system in terms of recovery speed and the under
shoot of finished goods inventory. This result verifies Proposition 2 that 

ωn (PPC)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δ
τl
+ δt

2
√

is always larger than ωn (RPC) =
̅̅̅
δ
τl

√
. This is particularly 

the case when lead times are long (large values of τl). Furthermore, 
Fig. 3f shows τl has a limited role in influencing convergence speed in 

the PPC-based system (recall ωn (PPC) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δ
τl
+ δt

2
√

). 

6.4. Dynamic analysis for seasonal demand 

Fig. 4 reports the dynamics of o(t) and i(t) in response to seasonal 
demand under both RPC and PPC policies. Note that Fig. 4a shows the 
FR plot for the linear RPC and PPC systems, while the forbidden returns 
policy is incorporated in both systems to generate the dynamic behav
iour reported in Fig. 4b–e. 

From Fig. 4a, we can make several observations. First, op shows a 
concave U-shape for both systems. The demand frequency that generates 
peak op, or worst-case amplification (Udenio et al., 2022), is 0.15 
rad/week in the RPC system (op = 1.2) and 0.7 rad/week in the PPC 
system (op = 2.4). Second, it is clear that the PPC system underperforms 
relative to the RPC system by generating significantly higher op for most 
demand frequencies. The only exception is for low-demand frequencies 
of 0–0.2 rad/week where the RPC system generates higher op. Finally, 
op < 1 for most demand frequencies in the RPC system, which means the 
RPC system can filter most demand frequencies to avoid the bullwhip 
effect. However, this is not the case for the PPC system where op > 1 for 
demand frequencies of 0–1.65 rad/week. 

When the nonlinear forbidden returns is incorporated, as shown in 
Fig. 4b–e, a decrease in demand frequencies leads to a change in order 
and inventory dynamics from linear to nonlinear behaviour in the RPC 
system. For example, the system is completely linear for ω = 0.9 rad/

Table 4 
Experimental design.  

Performance measure  

Convergence speed ωn 

Oscillation ζ 
Peak step response (Bullwhip) os 

Order amplitude ratio op 

Experimental factor  
δ 0.1, 0.3, 0.5, 0.7, 1 
τa 2, 4, 8, 16, 32 
τl 2, 4, 8, 16, 32 
ω (rad/week) 0.1, 0.5, 0.9 
System parameter baseline setting τa = 8, τ̂l = τl = 4,

δ = 0.5,ω = 0.1rad/week 
System input setting (Demand) Seasonal demand : d(t) = cos(ωt)+ 1,

Step demand : d(t) =

{
0, t < 0
1, t ≥ 0  

Table 5 
Simulation verification for bullwhip under shock and seasonal demand (Ana: analytical result; Simu: simulation result).  

Amplitude ratio under seasonal demand (nonlinear forbidden returns system) 

δ RPC (Ana) RPC (Simu) PPC (Ana) PPC (Simu) τa RPC (Ana) RPC (Simu) PPC (Ana) PPC (Simu) 

0.1 1.23 1.14 1.29 1.19 2 1.17 1.11 1.11 1.07 
0.3 1.25 1.18 1.17 1.13 4 1.2 1.14 1.13 1.09 
0.5 1.21 1.16 1.15 1.11 8 1.21 1.16 1.15 1.11 
0.7 1.19 1.15 1.12 1.07 16 1.18 1.13 1.14 1.09 
0.9 1.18 1.13 1.11 1.06 32 1.12 1.07 1.11 1.07  
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week where the mean of o(t) and i(t) can be predicted by using the final 
value theorem (see Appendix A1). However, the PPC-based system 
generates nonlinear behaviour for all simulated frequencies, resulting in 
increased mean of o(t) and i(t), as shown in Fig. 4d. This simulation 
result also verifies Property 3. As illustrated in the linear FR, op(PPC) > 1 
for all simulated frequencies. Therefore, the PPC system generates 
nonlinear behaviour driven by the forbidden returns policy; that is, a 
negative value of orders is prevented. We can conclude that the PPC 
policy underperforms to the RPC policy in terms of its higher amplitude 
ratio and inventory variance for most of the demand frequencies. The 
only exceptional case is ω = 0.9 rad/week for which the bullwhip effect 
and inventory variance in the PPC-based system are lower than those in 
the RPC-based system. 

6.5. RPC and PPC policies comparison under fixed bullwhip and 
inventory variance 

This section compares the adjustment of control policies for RPC and 
PPC controlled systems, including inventory proportional controller (δ) 
and exponential forecasting smoothing factor (τa), for given dynamic 
performance metrics. This helps decision makers to understand how 
their system parameters need to be adjusted to achieve a targeted dy
namic output. We explore the dynamic response of the proportional OUT 
system with normally distributed stochastic demand process with mean 
μ = 3 and variance σ2 = 1, d(t) ∼ (μ,σ2). Bullwhip (BW) and inventory 
variance (IV), calculated as variance ratios between order/inventory 
and demand, are adopted as the performance metrics. The former is 
directly related to the capacity-related production cost and the latter is 

linked to the customer service level and inventory holding cost (Disney 
et al., 2021). We vary δ or τa to reach the desired dynamic performance 
with baseline settings for δ and τa as 0.3 and 8, respectively, while other 
system parameter settings can be found in Table 4. Fig. 5 shows the 
simulation results. Note that the numerical values shown in Fig. 5 
represent the values of the other metric generated for one fixed per
formance metric; for instance, the values shown in Fig. 5.1 refer to the 
inventory variance generated for a target bullwhip. 

Specifically, under each target bullwhip (0.5–2) and inventory 
variance (2–3.5), the RPC system requires a significantly larger value of 
δ than that in the PPC system (Fig. 5a and b), meaning inventory 
correction speed is tuned to a fast value in the RPC-based system. In 
particular, for target BW = 2 or IV = 2, the unconventional setting, i.e., 
δ > 1, is required if an RPC is adopted in which an over-ordering 
strategy is needed to achieve target dynamic performance. In contrast, 
if the PPC policy is adopted, the required adjustment to δ is in the range 
of 0.1–0.3 for targeted BW and 0.1–0.4 for targeted IV—that is, a slower 
inventory correction behaviour is observed. Furthermore, if target BW is 
high (e.g., BW = 2), the corresponding IV generated in the PPC-based 
system (2.16) is lower than that in the RPC system (2.27). However, 
for low target IV (2–2.5), the PPC system achieves lower BW than the 
RPC system. This means if a company prioritises customer service level, 
a win–win solution can be achieved by adopting the PPC policy to 
minimise both bullwhip and inventory variance. However, if bullwhip 
cost is paramount, the RPC with lower BW and IV is more advantageous 
than the PPC strategy. 

Fig. 5c and d shows the required adjustment in τa for target BW and 
IV. Overall, for the same target BW/IV, the RPC system requires a 

Fig. 2. Amplitude ratio and order peak as a function of ω, τa, τl and δ in response to shock and seasonal demand under RPC and PPC policies.  
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Fig. 3. Impact of δ and τa on finished goods inventory in responding to step demand increase under RPC and PPC policies.  
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smaller τa than the PPC system. Notably, for a low BW (0.5) and high IV 
(3.5) target, the PPC system requires an unconventional setting of 
τa—that is, a very large value of τa—to greatly smooth demand. 
Furthermore, from the numerical values shown in Fig. 5c and d, it can be 
concluded that, under all fixed BW/IV and proportional inventory 
adjustment (δ), the RPC outperforms the PPC strategy by generating a 
lower IV/BW. 

7. Summary and managerial implications 

We summarise in Table 6 our main analytical and simulation results. 
From Table 6, we can derive the following managerial implications.  

1. If customer service level is the top priority for a company in responding 
to a shock demand increase, the firm should adopt the PPC strategy, 
setting the desired order pipeline inventory based on forecasted de
mand and on-hand inventory fluctuations. Compared to the RPC 

policy, high customer service levels including less likelihood of 
stock-out and quicker inventory recovery speed can be achieved in 
the PPC system. However, the company may need to pay more 
bullwhip-related costs induced by the PPC policy, such as the cost of 
ramping up/down machines, hiring/firing people and fluctuating 
inventory holding cost. Thus, a trade-off cost–benefit analysis is 
needed before determining desired order pipeline inventory policies.  

2. If bullwhip cost reduction is the top priority for a company in 
responding to a sudden increase in demand, the traditional RPC 
strategy should be adopted. However, the RPC system may lead to 
low customer service levels driven by low stock levels and slow stock 
recovery speed during the early period of the sudden demand change. 
To avoid poor customer service, more safety stock and/or an 
outsourcing strategy may be implemented, thereby increasing 
operation-related costs (e.g., inventory holding cost).  

3. The forbidden returns policy contributes to the reduction in bullwhip- 
related costs at the expense of increased inventory dynamics costs in 

Fig. 4. The impact of ω on order and finished good inventory in responding to seasonal demand under RPC and PPC policies.  
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both RPC and PPC systems. For instance, the inventory holding cost 
(increased mean inventory) and inventory variance (increased stock- 
out possibility) can be increased, while the inventory recovery speed 
will decrease. Managers thus need to consider the cost structure to 
minimise the total cost, i.e. bullwhip + inventory dynamics cost 
under a forbidden returns policy in the supply chain.  

4. The impact of demand characteristics on bullwhip cost reduction. Beside 
selecting appropriate decision parameters to avoid bullwhip, there is 
a need to consider customer demand characteristics given purchas
ing frequency plays an important role in influencing bullwhip costs. 
It is recommended that decision makers use the ‘cross-over fre
quency’ and FR plot to visualise how order amplitude ratio changes 
with a change in customer demand frequency. In this way, a corre
sponding marketing and sales strategy—for example, promotion and 
incentive strategies to increase/decrease in customer purchase fre
quency—may be implemented.  

5. The impact of lead time. The PPC policy is not recommended if the 
production lead time is long, as bullwhip and related costs are 
significantly higher than in the RPC-based system. This result is 
applicable to both allowable and forbidden returns contexts. 

8. Conclusions 

In this paper, we study dynamic behaviour under two desired order 
pipeline inventory policies: (1) the RPC, where the target order pipeline 
is set as a function of forecast and estimated lead times; and (2) the PPC, 
where the target order pipeline is determined not only by the product of 
forecast and lead times, but also by on-hand inventory adjustment. We 
develop a system dynamics model representing a one-echelon pro
duction–inventory control system replenished by the proportional OUT 
policy. The forbidden returns policy is considered to capture the real- 
world returns restriction phenomenon between customers and suppliers. 

Overall, the choice between PPC and RPC is determined by the sys
tem’s inherent structure and customer demand characteristics. The RPC 
can be chosen if the market environment is relatively stable and the 
system is characterised by long physical lead times, such as those often 
encountered in the defence industry (Goltsos et al., 2019). Conversely, if 
the system faces a volatile environment, such as the characteristics of 
fast-moving consumer goods industry including short lead times and 
high inventory sensitivity, the PPC strategy may be selected. Also, the 
relative cost weighting of bullwhip and inventory variance should be 
considered as one of main factors for the order pipeline policy choice. 
RPC should be adopted if minimising bullwhip costs is the priority, while 
PPC outperforms RPC when inventory related cost (e.g. high require
ment of customer service level) is prioritised. 

We also explored the adjustment of system parameter settings for 
targeted bullwhip or inventory variance under i.i.d stochastic demand. 
The decision maker in the RPC system needs to set a much faster in
ventory correction speed and higher forecasting weight on current de
mand than that in the PPC system to achieve the same targeted bullwhip. 
Similar insights can be identified for a targeted inventory variance: a fast 
inventory correction speed and quick reaction to current demand for the 
forecasting are needed in the RPC system. In terms of RPC and PPC 
policy choice, decision makers should adopt the RPC strategy for a given 
bullwhip target and inventory/forecasting policy, as the RPC system 
outperforms PPC by generating less inventory variance. However, for a 
target inventory variance and forecasting policy, the PPC strategy with 
less bullwhip is better than the RPC policy. In contrast, decision makers 
should consider the RPC policy to generate less bullwhip for a targeted 
inventory variance and inventory control policy. 

We contribute to the systematic comparison of two order pipeline 
strategies using bullwhip and inventory variance measures, and identify 
several future research directions. First, the capacity constraint, 
assumed as unlimited in our study, can be further studied to reflect 

Fig. 5. The required adjustment to δ and τa for fixed bullwhip and inventory variance under RPC and PPC policies.  
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capacity-constrained supply chain systems. In addition, cost functions 
based on system dynamics can be developed to optimise system control 
policies, and the results derived from the one-echelon pro
duction–inventory system can be extended to multi-echelon supply 
chain systems. Additional empirical research should be conducted to 
verify analytical/modelling research findings and update industrial 
practice regarding order pipeline control. Last, future research might 
explore analytical approaches to estimate stochastic lead times, given 
that accurate lead time estimation greatly influences bullwhip under the 
RPC and PPC systems. 
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Table 6 
Summary of the main analytical and simulation results.  

System dynamics analysis Main results 

Time domain analysis (step 
demand) 

Inventory equilibrium RPC iRPC
new (t) = (τ̂l − τl)

PPC 
iPPC
new (t) =

(τ̂l − τl)

1 + δτ̂l 
Convergence speed and 
oscillation 

RPC 
ωn(ot) =

̅̅̅̅̅
δ
τa

√

; ζ(o(t)) =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
δτa

+ δτa + 2

√

ωn(it) =

̅̅̅̅
δ
τl

√

; ζ(i(t)) =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
δτl

+ δτl + 2

√

PPC For τ̂l ∕= τl 

ωn(o(t)) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ + δ2 τ̂l

τl

√

; ζ(o(t)) =
(1 + δτl)

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτl(1 + δτ̂l )

√

. 

For τ̂l = τl 

ωn(i(t)) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δ
τl
+ δ2

√

; ζ(i(t)) =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
δτl

+ 1

√

. 

Order peak (bullwhip effect) 1. os(PPC) > os(RPC), suggesting the PPC-based system always generates more bullwhip than the RPC-based 
system under the same system structure and parameter settings. 
2. os(RPC) is independent of τl, while os(RPC) is dependent on both τl and τ̂l . 

Frequency domain analysis 
(sinusoidal demand) 

Nonlinear dynamic 
oscillations and recovery 

RPC The inventory and order ωn and ζ are identical: 

ωn =

̅̅̅̅̅̅̅̅̅
NAδ

τl

√

ζ =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl
+ NAδτl + 2

√

. 

PPC 
The inventory and order ωn and ζ are identical and for τ̂l ∕= τl: ωn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

NA(δ + δ2 τ̂l )

τl

√

ζ =
(1 + NAδτl)

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl(1 + δτ̂l )

√

For τ̂l = τl: 

ωn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

NA

(δ
τl
+ δ2

)√

; ζ =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl
+ 1

√

. 

Amplitude ratio (AR) 1. AR for both policies is determined by inherent system structure (τl), system control parameters (δ and τa) and 
external demand characteristics ω. 
2. There exists a cross-over demand frequency; that is: ωc for op(RPC) = op(PPC), so that op(RPC) > op(PPC)∀
ω < ωc, and op(RPC) < op(PPC) if ω > ωc. 

Simulation analysis AR and order peak (bullwhip) 1. If the sinusoid demand is assumed, AR shows a concave U-shaped relationship with demand frequency in 
both RPC and PPC systems. 
2. If the sinusoid demand is assumed, the forbidden returns policy contributes to the AR reduction in RPC and 
PPC systems. 
3. As the lead time increases, the increase of bullwhip in the PPC system is much more significant than that in 
the RPC system. 

Inventory dynamics 1. If a step demand is assumed, the PPC-based system always outperforms the RPC-based system in terms of the 
lower undershoot and the higher inventory convergence speed for the same δt and τl. 
2. If the sinusoid demand is assumed, the PPC policy underperforms relative to the RPC policy in terms of its 
higher level of bullwhip effect and inventory variance, for ω = 0.1,0.3,0.5 and 0.7. 
3. The only exceptional case is ω = 0.9, where the bullwhip effect and inventory variance in the PPC-based 
system are lower than those in the RPC system.  

Control policy adjustment for 
target dynamics performance (i.i. 
d normally distributed demand) 

1. For a given BW/IV and fixed τa, δ is set to a larger value for RPC than for PPC. RPC outperforms relative to the 
PPC strategy if bullwhip reduction is the priority, while the PPC should be chosen if customer service level is 
important. 
2. For a given BW/IV and fixed δ, τa is set to a larger value for PPC than RPC, meaning a more smoothing 
forecasting strategy should be adopted in the PPC-based system. Also, RPC outperforms the PPC strategy with 
correspondingly lower IV/BW.  
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Appendix A. Proof of Propositions 

A1. Proof of Proposition 1 

To derive the inventory equilibrium for both RPC and PPC systems, we need to obtain the inventory transfer function in relation to demand. 
Specifically, based on Equations (1)–(8), we re-write the following equations in describing the dynamic structure of the linear production- 

inventory system replenished by proportional OUT policy: 

o(t)= oa = d̂(t)+ δ • (ŵ(t) • τ̂l − w(t)) + δ • (β − i(t)), (A1)  

where 

i(t)=
∫ ∞

0
(r(t) − d(t))dt, (A2)  

w(t)=
1
τl

∫ ∞

0
(o(t) − r(t))dt, (A3)  

d̂(t)=
1
τa

∫ ∞

0
(d(t) − d̂(t − 1))dt, (A4) 

and 

RPC : ŵ(t) =wr = d̂(t) • τ̂l PPC : ŵ(t) = wp = d̂(t) • τ̂l + δ • (β − i(t)) • τ̂l . (A5)  

Using the Laplace transform, i.e. F(s) =
∫∞

0 e− st f(t)d(t),∀0 ≤ t < ∞, we have the corresponding following Equations in Laplace domain: 

i(t)=
1
s
(r(t) − d(t)), (A6)  

wt =
1
s
(o(t) − r(t)), (A7)  

d̂(t)=
1

1 + τas
d(t), (A8)  

r(t)=
1

1 + τls
o(t). (A9)  

For simplicity without losing generality we assume β = 0 (Zhou et al., 2017). Substituting Equations (A5)-A(9) to (A1), the dynamic response of o(t)
and i(t) with RPC and PPC policies in responding d(t) in Laplace domain can be derived: 

o(t)RPC

d(t)
=
(s + δ(1 + sτa) + sδτ̂l)

(s + δ)(1 + sτa)
, (A10)  

o(t)PPC

dt
=

(s + δ + sδτa)(1 + sτl)(1 + δτ̂l )

(1 + sτa)(s2τl + s(1 + δτl) + δ + δ2 τ̂l)
, (A11)  

i(t)RPC

d(t)
=

δ(τ̂l − τl) − s(τa + τl) − sτaτl(δ − s)
(s + δ)(1 + sτa)(1 + sτl)

, (A12)  

i(t)PPC

d(t)
=

δτ̂l − (s + δ)τl − sτa(1 + (s + δ)τl)

(1 + sτa)(s2τl + s(1 + τlδ) + δ + δ2 τ̂l)
. (A13)  

To obtain the new inventory equilibrium in responding a step demand increase (ds =
1
s
)
, the Final Value Theorem (FVT), i.e. lim

s→0
s i(t)

d(t) for both RPC and 

PPC systems: 

lim
s→0

s
i(t)RPC

d(t)
= s •

1
s
•

δ(τ̂l − τl) − s(τa + τl) − sτaτl(δ − s)
(s + δ)(1 + sτa)(1 + sτl)

= τ̂l − τl, (A14)  

lim
s→0

s
it(PPC)

dt
= s •

1
s
•

δτ̂l − (s + δ)τl − sτa(1 + (s + δ)τl)

(1 + sτa)(s2τl + s(1 + τlδ) + δ + δ2 τ̂l)
=
(τ̂l − τl)

1 + δτ̂l
. (A15)  

A2. Proof of Proposition 2 

The damping ratio and natural frequency of orders can be found based on the second order polynomial of denominator of the transfer function, i.e. 
s2 + 2 • ωn • ζ • s+ ωn

2. 
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By inspecting Equations (A9) and (A10), we can derive the ωn and ζ of orders under different pipeline control policies: 

For RPC : ωn =

̅̅̅̅
δ
τa

√

; ζ =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτa
+ δτa + 2

√

, (A16)  

For PPC : ωn (τ̂l∕=τl) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ + δ2 τ̂l

τl

√

; ζ(τ̂l ∕= τl)=
(1 + δτl)

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτl(1 + δτ̂l)

√

, (A17)  

ωn (τ̂l=τl) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δ
τl
+ δ2

√

; ζ(τ̂l = τl)=
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτl
+ 1

√

. (A18) 

Similarly, we can derive the ωn and ζ of inventories for both RPC and PPC systems by inspecting the denominator of Equations (A11) and (A12). It 
can be seen that by comparing Equations (A11) and (A9), a new term (1+sτl) is added in the denominator of transfer function, while the denominator 
of Equations (A12) and (A10) are identical. As the result, the ωn and ζ of inventory and order under PPC policy are identical, while we can obtain the 
following ωn and ζ of inventory under RPC policy as follows: 

For RPC : ωn =

̅̅̅̅
δ
τl

√

; ζ =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

δτl
+ δτl + 2

√

, (A19)  

A3. Proof of Proposition 3.1 and 3.2 

If d(t) = A • cos(ωt) + B,∀B,A,ω ∈ R, β > a > 0 is assumed, its Laplace form can be written as 

F(s)=
∫ ∞

0
e− st(A • cos(ωt)+B)dt =

A • s
s2 + ω2 +

B
s

. (A20) 

The dynamic response of o(t)RPC in responding d(t) in Laplace domain, based on Equation (A9) can be written as, 

o(t)RPC
=
(s + δ(1 + sτa) + sδτ̂l)

(s + δ)(1 + sτa)
•

(
A • s

s2 + ω2 +
B
s

)

. (A21) 

We apply the inverse Laplace transform of Equation (A20) to obtain dynamic response of o(t)RPC in relation to d(t) in time domain: 

o(t)RPC
=

A

⎛

⎜
⎜
⎝

e− tδδ3( 1 + ω2τ2
a

)
(τa + τ̂l ) − e−

t
τa
(
ω2 + δ2)(1 + δτ̂l) + (1 − δτa)

( (
ω2 + δ2)Cos(ωt)

+ω2δ(δ Cos(ωt) + ω Sin(ωt))τ2
a + ωδ(ω Cos(ωt) − δ Sin(ωt))τ̂l

+ω2(δ Cos(ωt) + ω Sin(ωt))τa(1 + δ)

⎞

⎟
⎟
⎠

(ω2 + δ)(1 − δτa)
(
1 + ω2τ2

a

) + B. (A22) 

For a long-time response in equilibrium, e− t
τc = e− t = 0. Equation (A21) can be re-arranged as: 

o(t)RPC
=

A

(

(1 − δτa)

( (
ω2 + δ2)Cos(ωt) + ω2δ(δ Cos(ωt) + ω Sin(ωt))τ2

a+

δ(ω Cos(ωt) − δ Sin(ωt))τ̂l + ω2(δ Cos(ωt) + ω Sin(ωt))τa(1 + δτ̂l )

))

(ω2 + δ)(1 − δτa)
(
1 + ω2τ2

a

) + B. (A23) 

Which can be simplified as: 

o(t)RPC
=A

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ2 + (ω(1 + δτa + δ))2

(ω2 + δ2)
(
1 + ω2τ2

a

)

√

cos
(

ωt − tan− 1
(

ω + ωτA

1 − ω2τA

)

+ tan− 1(ω+ω
(

τ̂p + τA
))
)

+B, 0 ≤ t<∞. (A24) 

The op(RPC), measured by amplitude ratio, can be derived 

op(RPC)=
A •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δ2+(ω(1+δτa+δτ̂l ))

2

(ω2+δ2)(1+ω2τ2
a)

√

A
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ2 + (ω(1 + δτa + δτ̂l ))
2

(ω2 + δ2)
(
1 + ω2τ2

a

)

√

, (A25) 

and Ao(t)(RPC) can be derived: 

Ao(t)(RPC)=A • op(RPC)=A •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δ2 + (ω(1 + δτa + δτ̂l))

2

(ω2 + δ2)
(
1 + ω2τ2

a

)

√

. (A26) 

Similarly, the bullwhip of a PPC-based system can be derived using the same procedure shown above. So we prove the Proposition 3.1. 
For the forbidden return system, we have oa(t) = [o(t)]+, where [o(t)]+ is the maximum operator. By truncating negative value we can capture the 

influence of forbidden return. So, we can re-write the above forbidden return policy as the following piecewise linear function 

oa(t)=
{

o(t) |o(t) > 0
0 |o(t) < 0 . (A27) 

For a given seasonal demand d(t) = A • cos(ωt)+ B,∀B,A,ω ∈ R,B > A > 0, using describing function approach, oa can be approximated as: 

oa(t)≈NA • Ao(t) • cos(ωt+φ) + NB • B, (A28) 
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where NA, NB and φ are amplitude gain, mean gain and phase shift, Aot is the amplitude of o(t) in responding d(t). Amplitude ratio, op, is measured by 

op =
amplitude of oa

amplitude of dt
=

NA • Ao(t)

A
. (A29) 

NA can be approximated, based on Equation (12)–(16) in the main paper by 

NA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2
1 + b2

1

√

Ao(t)
, (A30)  

where 

a1 =
1
π

∫ π

− π
o(t) • cos(wt)dwt, (A31)  

b1 =
1
π

∫ π

− π
o(t) • sin(wt)dwt, (A32) 

Using Mathematica@, we can derive the NA =

B•

̅̅̅̅̅̅̅̅̅̅̅
1− B2

Ao(t)
2

√

Ao(t)
+Cos− 1

(
− B

Ao(t)

)

π . So we obtain op as follow: 

op =
NA • Ao(t)

A
=

B•

̅̅̅̅̅̅̅̅̅̅̅
1− B2

Ao(t)
2

√

Ao(t)
+Cos− 1

(
− B

Ao(t)

)

π • Ao(t)

A
. (A33) 

So we prove the Proposition 3.2. 

A5. Proof of Proposition 4 

Based on Proposition 3, we have oa(t) = [o(t)]+ = NA • o(t), where NA =

B•

̅̅̅̅̅̅̅̅̅̅̅
1− B2

Ao(t)
2

√

Ao(t)
+Cos− 1

(
− B

Ao(t)

)

π . By replacing o(t) =
oa(t)
NA

, we can derive the transfer 
function of oa(t) and i(t) in relation to d(t) based on Equations (A1) and (A5)- (A8): 

oRPC
a (t)
d(t)

=
(s + δ(1 + sτa) + sδτ̂l)(1 + sτl)

(1 + sτa)
(

s2 + s
(

NAδ + 1
τl

)
+ NAδ

τl

) , (A34)  

oRPC
a (t)
d(t)

=
((δ + δ2 τ̂l)(1 + sτa) + s(1 + τ̂l δ))(1 + sτl)

(1 + sτa)
(

s2 + s
(

NAδ + 1
τl

)
+

NAδ(1+δτ̂l )
τl

) , (A35)  

i(t)RPC

d(t)
=
(s + δ(1 + sτa) + sδτ̂l)NA − (1 + sτa)

(
s2 + s

(
NAδ + 1

τl

)
+ NAδ

τl

)

s(1 + sτa)
(

s2 + s
(

NAδ + 1
τl

)
+ NAδ

τl

) , (A36)  

i(t)RPC

d(t)
=
((δ + δ2 τ̂l)(1 + sτa) + s(1 + τ̂l δ)) − (1 + sτa)

(
s2 + s

(
NAδ + 1

τl

)
+

NAδ(1+δτ̂l )
τl

)

s(1 + sτa)
(

s2 + s
(

NAδ + 1
τl

)
+

NAδ(1+δτ̂l )
τl

) . (A37) 

From Equations (A34) and (A36), we can observe τ̂l only appears in the numerator in both order and inventory under RPC policy. Thereby, 
damping ratio and natural frequency of inventory and orders are identical and remain the same for τ̂l ∕= τl and τ̂l = τl. By inspecting the second order 

polynomial of denominator of the transfer function, i.e. 
(

s2 + s
(

NAδ + 1
τl

)
+ NAδ

τl

)
, we can derive ωn and ζ of order and inventory for the RPC controlled 

system: 

ωn =

̅̅̅̅̅̅̅̅
NAδ
τl

√

ζ =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl
+ NAδτl + 2

√

. (A38) 

However, if PPC policy is adopted in the nonlinear forbidden return system, τ̂l is observed in both numerator and denominator of the transfer 
function shown in Equations (A34) and (A36). As a result, we consider two conditions when τ̂l ∕= τl and τ̂l = τl. Similar to the derivation for the RPC- 
controlled system, we can obtain ωn and ζ for the PPC-controlled system below: 

ωn (τ̂l∕=τl) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

NA(δ + δ2 τ̂l)

τl

√

ζ(τ̂l ∕= τl)=
(1 + NAδτl)

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl(1 + δτ̂l)

√

, (A39)  

ωn (τ̂l=τl) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

NA

(
δ
τl
+ δ2

)√

ζ(τ̂l = τl)=
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

NAδτl
+ 1

√

. (A40) 

So we prove the Proposition 6. 
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Appendix B. Order peak derivation under RPC and PPC controlled systems 

This section derives the analytical results of order peak in responding a unit demand shock. A unit demand shock is also named as Heaviside 
Function, d(t) = 0,∀t < 0,d(t) = 1,∀t ≥ 0, its Laplace form can be written as 

F(s)=
∫ ∞

0
e− std(t) =

1
s

. (B1) 

The dynamic response of o(t)RPC in responding d(t) in Laplace domain can be written as, 

o(t)RPC
=
(s + δ(1 + sτa) + sδτ̂l)

(s + δ)(1 + sτa)s
. (B2) 

Using inverse Laplace transform of Equation (A20), we can obtain the dynamic response of o(t)RPC in time domain: 

o(t)RPC
= 1+

e− tδ( − δτa − δτ̂l)

δτa − 1
+

e− t
τa (1 + δτ̂l)

δτa − 1
. (B3) 

Based on the definition, the order peak of the RPC system, that is, oRPC
s , in responding a shock demand can be measured by the ratio between peak of 

o(t)RPC and demand (d(t) = 1). So we need to find the maximum of o(t)RPC. First, we differentiate Equation (A21) with respect to t: 

o(t)RPC

dt
= −

e− tδ( − δτa − δτ̂l)

δτa − 1
−

e− t
τa (1 + δτ̂l)

τa(− 1 + δτa)
. (B4) 

Then, solve the zero gradient of Equation (A22) with t: 

t=
τa

(
ln( − δ2τa − δ2 τ̂l ) − ln

(
1+δτ̂l

τa

))

δτa − 1
. (B5) 

Substituting Equation (A23) into (A22) we can obtain the bullwhip of RPC system as follow: 

oRPC
s = 1+

1 + δτ̂l

δτa
⋅
(

1 + δτ̂l

δ2τa⋅(τa + τ̂l)

) 1
δt τa − 1

. (B6) 

The order peak of the PPC-based system can be derived using the same procedure shown above: 

oPPC
s =

(

1+ δ ⋅ (τa + τ̂l) ⋅
(

1 + δτ̂l

δ2τa⋅(τa + τ̂l )

)1+ 1
δτa − 1
)
(

1+
τlδ
3

)
. (B7) 

By comparing Equation (B6) and (B7), it is straightforward to observe that oPPC
s > oRPC

s , which indicates that the RPC system always generates less 
bullwhip effect than the PPC system. This finding is consistent with that of Kim and Springer (2008). Similarly, oPPC

s > oRPC
s > 1, for any system policy 

control and system physical structure. This result suggests that the bullwhip effect is unavoidable in the proportional order-up-to system, regardless of 
pipeline control policies. Furthermore, regarding Equation (B6), the bullwhip effect is dependent on estimated lead times (τ̂l) only. This highlights the 
importance of monitoring actual lead times in controlling unwanted system dynamics behaviour. The impact of τl on bullwhip becomes complex and 
greatly depends on τ̂l under the RPC system. For example, τ̂l can be estimated by following a particular distribution centred on the actual lead time, 
and thus the variability of τ̂l may play an additional role in influencing bullwhip effect (Disney et al., 2016). 

However, this is not the case for the PPC-controlled system in which τl positively influences the bullwhip effect level. Furthermore, given the 
additional term, that is, 

(
1 + τlδt

3
)
, in Equation (B7) compared with Equation (B6), it is interesting to note that an increase of τl can significantly 

increase the difference in the bullwhip effect between PPC- and RPC-controlled systems. In other words, if the physical lead time is long, the bullwhip 
effect under the PPC supply chain system is significantly higher than that in the RPC system. 
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